
Stochastic Processes1

These notes provide some brief theoretical background that will be useful throughout the

semester. We are not yet concerned with econometrically estimating time series. Instead we

want to think about the theoretical data generating process that we will later try to estimate.

For now, we will look only at univariate processes. Because our focus is on random process,we

will refer to these as stochastic processes.

Autoregressive 1 Processes

We now begin to describe several common types of time series. We begin with an AR(1)

(for “autoregressive”) process. An AR(1) time series takes the following form:

xt = δ + αxt−1 + ut (1)

This is called an AR(1) process because the variable, xt, depends on exactly one lag of

itself. δ is a constant. ut is a random error term. We assume that it is a mean-zero white noise

process. This entails that, on average, it equals zero and that ut and its lags are uncorrelated.

Knowing ut−1 tells us nothing about ut.

Examining (1), we see that xthas a fixed point which it would stay at if it started there and

there is no randomness. We can solve for this by setting all us equal to their mean (zero) and

dropping the time subscript:

x =
δ

1− α
(2)

This fixed point may or may not be the mean. We will examine this point in greater detail

soon. It is better to think of it as akin to the concept of a steady state which you have seen in

your macro courses.

The value of α tells us a great deal about this process. We consider five cases:

#1 α ∈ (0, 1). In this case, xt is positively autocorrelated in that a high value of xt likely leads

to a high value of xt+1. Below, I plot two examples for α = 0.5. The first has no constant

(δ = 0). The second sets δ = 0.2. In both cases, I assume that ut is normally distributed with

a mean equal to zero and a standard deviation (and variance) equal to one.
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Table 1: α = 0.5, δ = 0
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In both cases, xt always has a tendency to revert back to its mean. This will be important

when we discuss the concept of stationarity.

Because the process is mean reverting, (2) is the true mean. This does not mean that a

given sample mean is likely to equal the process’s true mean. For this case, the time series is

also ergodic. Thus as T →∞, the sample mean will converge to δ
1−α .

Increasing δ has the effect of increasing the time series’s true mean. This is evident when

we compare the prior two graphs.

For an AR(1) process, α is a measure of the series’s persistence. Larger values imply that

shocks have longer lasting effects. Consider the case where α = 0.9.

Note that the time series now experiences extended periods where it is either above or below

its mean (zero). This is because the value in period t now has a major effect on the value on

period t+ 1.

1These are undergraduate lecture notes. They do not represent academic work. Expect typos, sloppy
formatting, and occasional (possibly stupefying) errors.
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Table 2: α = 0.5, δ = 0.2
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#2 α ∈ (1,∞). In this case, xt is positively autocorrelated as in #1. But it now behaves

explosively, there is no tendency to revert back to a mean or trend. Figure 5 plots this case for

α = 1.2 and δ = 0.

Because the process is explosive, (2) is not generally the true mean.

#3 α ∈ (−1, 0). Setting δ = 0, and α = −0.5 shows that this process is again mean-reverting.

But now, a positive value of xt implies that a negative value of xt+1 is likely and vice-versa.

The system is oscillatory.

#4 α ∈ (−∞,−1). Here, the system is both explosive (as in #1) and oscillatory (as in #4).

#5 α = 1,−1. This is known as a unit root. We will discuss these later in the course.

We now consider an alternate way of wiring an AR(1) process. If (1) is true in period t,

then we can re-date this equation to make it hold for period t− 1:

xt−1 = δ + αxt−2 + ut−1 (3)
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Table 3: α = 0.9, δ = 0
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This is a common trick. As long as the definition of t is arbitrary, then we can always

re-date a time series either backward or forward as long as we re-date all of the time subscripts

by the same number of periods. We can then insert (3) into (1):

xt = α2xt−2 + ut + αut−1 + (1 + α)δ (4)

We can then re-date (3) backwards one more period:

xt−2 = δ + αxt−3 + ut−2 + δ (5)

And then we can insert (5) into (4) to eliminate xt−2:

xt = α3xt−3 + ut + αut−1 + α2ut−2 + (1 + α + α2)δ (6)

The goal is to continue until a pattern emerges. Note that each time we iterate backward,

we move the x term back one period and add one more error term. If we do this an infinite

number of times and if |α| < 1:
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Table 4: α = 0.9, δ = 0
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xt = ut + αut−1 + α2ut−2 + α3ut−3 + α4ut−4...+ (1 + α + α2 + α3...)δ (7)

This only works because as n→∞, αn → 0. That would not be the case if |α| ≥ 1.

We can now calculate the time series’s moments. To again calculate the mean a slightly

different way, we just insert the mean of ut, which is zero by assumption, into (7):

E[xt] =
δ

1− α
(8)

To derive (8), I am using the formula for an infinite geometric series to eliminate (1 + α +

α2 + α3...)δ. Crucially, the mean does not depend on t. It is thus mean-stationary.

By assumption, E[ut, us] = 0, that is the error terms are uncorrelated. We can thus use the

statistical result that the variance of the sum of independent variables is simply the sum of the

variances: Thus:

v[xt] = (1 + α2 + α4...)σ2
u =

σ2
u

1− α2
(9)

where I again use the formula for an infinite geometric series. Once again, this moment is
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Table 5: α = −0.5, δ = 0
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independent of t. The process is thus at least weakly stationary.2 It is therefore possibly useful

to include in an econometric specification.

Equation (7) is known as a MA(∞) process. “MA” stands for moving-average. An MA

process consists only of independent random error terms. For example, an MA(2) process is:

xt = δ + ut + θ1ut−1 + θ2ut−2 (10)

Equation (10) is MA(2) because it depends on two lags. AN MA(0) process is as white

noise.

An AR(1) process can always be written as a MA(∞) process. In general a MA(∞) process

cannot be written as an AR(1) process. If it can, the MA(∞) process is said to be invertable.

Any finite-order MA process is weakly stationary. To see this, note that the mean is simply

δ, independent of time. The variance will also be a function only of σ2
u and the θs.

We now consider the AR(1) process where |α| ≥ 1. Note that (7) no longer applies. So

2It can be shown that it is also stationary for all moments.
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instead iterate back t periods:

xt = ut + αut−1 + α2ut−2 + α3ut−3 + ...αtuo + (1 + α + α2 + ...αt)δ + αt−1x0 (11)

The mean of xt now depends on the term αt−1x0. It is time dependent and the process

is non-stationary. We cannot ordinarily use this time series in our econometric specifications.

Doing so would renders the results uninteresting.

ARMA processes :

An ARMA(p,q) process combines AR and MA components. For example, an ARMA (1,2)

process is:

xt = δ + αxt−1 + ut + θ1ut−1 + θ2ut−2 (12)

An ARMA(3,0) process includes no MA components. We would thus typically refer to this

as an AR(3) process:

xt = δ + α1xt−1 + α2xt−2 + α3xt−3 + ut (13)

One mistake I have seen students make is to assume, for example, that an AR(3) includes

only the third lag. This is not generally true (it is a special case, however). The p in an AR(p)

process refers only to the oldest lag term in the process.

There is no simple formula for the stationarity of an ARMA(p,q) process.

Theoretical vs. Applied Time Series)

The focus of this class is almost entirely on applied time series: how we can use the methods

of the class to better answer interesting economic questions. But it is worth briefly discussing

the distinction between this and theoretical time series, which includes finding new estimators.

Suppose we have an AR(1) process. We could thus decide to regress xt on its lag, xt−1.

Although we lose one observation (the earliest one which has no lag), there is no obvious

problem. We may reasonably decide to use OLS.

Now suppose that I propose an alternate estimator, Fabulous Most Circles. Which is better?

We may be able to analytically (using just math without simulations) show that OLS is better

in the ways we usually care about: consistency, efficiency, etc. But suppose that we cannot.
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Another approach is to choose values of δ, α, and the variance of ut from (1) and simulate 1

million draws using one of many available software packages. We can then apply each estimator

to the simulated data and see which provides better estimates. We can repeat this process 1

million times. Maybe one estimator always does better. Or maybe it depends on the value-of

α or some other parameter.
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