
Panel Data1

We now begin the course’s treatment of panel data. In general a panel consists of N cross

sections and T time periods. If each cross section has the same number of periods and each

time period has the same number of cross sections, then the panel is said to be “balanced.”

Otherwise, it is unbalanced. The maximum number of observations is thus NT which applies

to a balanced panel, but unbalanced panels will have fewer. Panels are commonly employed in

many types of applied work, including microeconomics and macroeconomics. We will consider

three estimators: pooled OLS, fixed effects, and random effects. We will then discuss how to

test among these options and discuss some related issues.

General Setup

Consider some variable, yit that varies both cross sectionally and over time. Consider the

following general regression model:

yit = x
′

itβ + z
′

iα + g
′

tα + uit = x
′

itβ + ci + dt + uit (1)

The matrix x consists of the regressors, excluding a constant. It is standard. α is a vector

of constants. The inclusion of z
′
i allows for cross sectional heterogeneity. Suppose, for example,

that i represents different countries. France may then, for example, include unobserved (not

included in x) heterogeneity that systematically affects yit differently than other countries in

the sample. The inclusion of g
′
t allows for heterogeneity over time. Suppose for example that

the financial crisis of 2008 is not explicitly included in x but causes yit to vary systematically

across countries. In this case, such heterogeneity might be significant.

Pooled OLS

Suppose that we are willing to assume that that both z
′
i and g

′
t are constants (normalized

to one). In this case, (1) reduces to:

yit = x
′

itβ + α + uit = x
′

itβ + ci + dt + uit (2)

Note that this is our standard OLS model. Pooled OLS thus ignores the potential for unob-

served heterogeneity and thus ignores the panel nature of the data altogether. If the remaining

1These are undergraduate lecture notes. They do not represent academic work. Expect typos, sloppy
formatting, and occasional (possibly stupefying) errors.
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Gauss-Markov conditions hold (requiring exogeneity, stationarity, homoscedasticity,etc.), then

OLS will be BLUE. Remaining violations of these conditions, however, must be corrected in

the standard manner.

The key for pooled OLS to be appropriate is convincing the reader that there is no unob-

served heterogeneity. Consider the following examples:

1. Our data includes the year 2008, where a rare financial crisis occurred, and yit is some

macroeconomic variable. We thus likely suspect that the econometric relationship is different

in 2008 than in other years. If our matrix of independent variables, x includes measures of the

financial crisis, then the effects of the financial crisis may be observed and we may not need to

worry about their unobserved effects.

2. Suppose that our dependent variable is insurance claims on beachfront property by state.

In Oregon, almost all shoreline is publicly owned. This policy would likely mean that the

econometric relationship is different for the State of Oregon. If our matrix of independent

variables includes a measure of publicly owned shorefront, then this heterogeneity may be

observed and there is no problem. If, however, it is not, then we have a problem and pooled

OLS is inappropriate.

In most cases, it is not possible to convince the reader that pooled OLS is appropriate. It

is therefore mostly used as a robustness check instead of as a primary estimator.

Fixed Effects

We now make two key assumptions:

E[ci|Xi] = h(Xi) (3)

E[dt|Xt] = k(Xt) (4)

In words, the cross sectional and time effects are correlated with the right hand side variables.

We can then substitute (3)-(4) into (2):

yit = x
′

itβ + h(Xi) + k(Xt) + [ci − h(Xi)] + [dt − k(Xt)] + uit (5)

The key here is that the bracket terms are, using (3) and (4), uncorrelated with x. We may

then absorb them into the error term without introducing endogeneity. Doing so yields our
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specification:

yit = x
′

itβ + αi + γt + uit (6)

The fixed effect model thus includes a different estimator for each time period and each cross

section. Assuming that the remaining Gauss-Markov conditions hold, then it is straightforward

to estimate (6) using least squares. To do this is easy:

1. Create dummy variables for all of the time periods except one.

2. Create dummy variables for all of the cross sections except one.

3. Run OLS without a constant. Including an additional constant (either here or in #1) will

create perfect multicolinearity, known as a dummy variable trap.

Because the model is just standard OLS with dummies, it is also known as the Least Squares

Dummy Variable Model (LSDV). We may then be interested in comparing it to the pooled OLS

model. This may be done using a simple F-test:

F (N − 1, NT −N − T −K) =
(R2

LSDV −R2
pooled)/(N + T − 1)

(1−R2
LSDV )/(NT −N − T −K)

(7)

where NT assumes a balanced panel and more generally is the number of observations and

where K is the number of independent variables in x. If the resulting F value is greater than

the critical value, than we reject the null that the fixed effects are jointly zero and that fixed

effects are appropriate,

Another complication is that we may not always want to include fixed effects for both cross

sections and time. This is often true when either N or T is small. It would be unusual, for

example, to include time fixed effects in your specification when your dataset only includes 5

periods. We can formally test for whether or not to include one type of fixed effect using F

tests. We could use an F test if we we wanted to test time fixed effects versus no time fixed

effects but that we are sure that we want to include cross sectional fixed effects.

We can then test cross sectional fixed effects versus the pooled OLS model:

F (N − 1, NT −N −K) =
(R2

LSDV −R2
pooled)/(N − 1)

(1−R2
LSDV /(NT −N −K)

(8)

Random Effects
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The critical difference between random and fixed effects is that the former assumes that

time and cross sectional effects are uncorrelated with the independent variables. In this case,

we may rewrite (2) as:

yit = x
′

itβ + α + vt + ei + uit (9)

The set of regressors is thus the same as pooled OLS. The complication, however, is that the

three components of the error term may be correlated with each other. This is similar to the

complication associated with the seemingly unrelated regressions model. We will not derive the

random effects estimator. Intuitively, it optimally exploits this correlation to obtain efficient

estimates.

Suppose that we run pooled OLS when we should not. There are two cases:

1. If fixed effects is the correct specification, then the exclusion of the dummy variables consti-

tutes omitted variable bias. Our results will thus be biased.

2. If random effects are the correct specification, then pooled OLS will generally be consistent

and unbiased. because information in the error terms is not exploited, however, it will be

inefficient. This is similar to just running OLS when a SUR model is the correct specification.

An Example:

Suppose that we are interesting in estimating the determinates of rental housing prices in

different U.S. cities. We include a set of regressors that includes income, housing prices, and a

measure of rent control. Our data is annual going back to 1970. Consider the case for each of

the three estimators:

1. If we believe that there is no unobserved heterogeneity than pooled OLS may be appropriate.

Suppose, for example, that rents increase nationwide in a given year. If this is purely a com-

bination of random noise and changes in the independent variables then there may be no need

for time fixed effects. Likewise, if rents in a particular city are persistently high, then there is

no need for cross sectional fixed effects if they are a combination of noise and the independent

variables.

2. Suppose that we observe that rents in New York and San Francisco are persistently high in

a way that is not random and is not explained by the independent variables. It is unlikely to be

random, for example, if they are regularly several standard deviations above those predicted by
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the model. If we further believe that this variation is correlated with the independent variables

then we may want to include cross sectional fixed effects. This may be the case if these cities

have high levels of rent control but the estimated (from pooled OLS) coefficients on rent control

are not large enough to explain the variation.

Further suppose that in 2005 we observe a nationwide increase in rents. If it is too large to

be random, then there may be a problem with pooled OLS. If we believe that this variation is

correlated with an independent variable, then we may want time fixed effects. This may be the

case if a national housing bubble (captured by housing prices) is responsible for the increase.

3. Now suppose that whatever is causing San Francisco and New York rents to be high is

unrelated to any of the regressors. This could be the case if high rents are a function of quality

of life that is unconnected to rent control, housing prices, or income. In this case, random

effects may be appropriate if similar reasoning applies to variation over time.

Fortunately we need not rely on theory alone to choose between fixed and random effects.

The Hausman test is the most popular test to test between fixed and random effects. Its details

are highly technical. Intuitively, it does the following:

1. Under the null hypothesis, both random and fixed effects are consistent. Random effects is,

however, efficient. This is the case if the dummy variables from fixed effects are close enough

to zero. If we fail to reject the null, we thus run random effects.

2. We then run both specifications.

3. A test statistic (that requires sophisticated linear algebra) is then computed. The value of

this test statistic is increasing in the absolute value of each dummy variable in the fixed effect

specification. It is also decreasing in their standard errors.

4. If the test statistic is large enough we reject the null. Because random effects may be

inconsistent, we thus run fixed effects.

The Hausman test is a good illustration of how econometricians must attempt to balance the

tradeoff between efficiency and consistency. Suppose that we want to obtain the best estimate

as defined by the expected squared difference between the actual value of a coefficient (which

is of course unobserved) and the estimated value. This error comes from two sources, bias and

variance:
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E[(β − β̂)2] = Bias2 + V ariance2 (10)

If the unobserved heterogeneity is uncorrelated with the independent variables, then random

effects is unbiased. It is also more efficient than fixed effects because it does not include any

irrelevant variables. As the correlations among the independent variables and the unobserved

heterogeneity become stronger, however, random effects becomes increasingly biased. At some

point, fixed effects becomes preferable.

It is important to note that sometimes a biased, but efficient, estimator may be better than

an unbiased, but inefficient, estimator. In practice, any correlation is unlikely to be exactly

zero. But random effects may still be preferable, even if it is biased, due to its efficiency. This is

not problematic. Keep in mind that every econometric specification suffers from some omitted

variable bias and is thus biased.

Other Issues

#1 Non-Stationarity: For the same reasons that non-stationarity is problematic in standard

time series, it is also problematic with panel data. For short (small T ) panels, this issue is often

ignored in the hopes that the non-stationarity will not manifest itself over a short timeframe.

For longer panels, however, it must be dealt with. The problem, however, is that a variable

may be I(1) for one i, it may be I(2) for another. It is thus not obvious how to deal with this.

There are two general approaches:

1. Run individual unit root tests (e.g. Dicky Fuller) and then difference each of the series

based on the highest order of integration. The benefits of this strategy are that it prevents

biased results. It may, however, require that we eliminate too many observations. It may also

introduce additional autocorrelation from overdifferencing.

2. Use more sophisticated unit root tests that balance the concerns from #1. These, however,

are beyond the scope of this class.

#2 Group Effects: Suppose that we have a panel with high N but low T . Including cross

sectional fixed effects may thus be problematic because it leaves us with too few degrees of

freedom. We may thus include group level fixed effects. We might for example, include a

dummy for Europe, one for North America, etc. The drawback of this approach is that it is

subjective how exactly we define the groups. We may also employ this method if we have low

N . We could thus include a dummy for each decade, for example, instead of each year.

6



Suppose for example that we have two years of annual data for 100 different countries.

Thus N = 100 and T = 2. We would surely not run true fixed effects, we do not have enough

observations. But we might include regional dummies that serve a similar purpose. We may

also include a dummy for one of the years, essentially time fixed effects.

#3 Dynamic Panels: Including a lag in panel data estimation significantly complicates the

analysis. We may cover this topic if time remains at the end of the semester.

One of the themes of this course is that time conveys information that an econometrician

may attempt to exploit. The method for exploiting this information in a panel that we have

discussed is to include time fixed effects. This is far cruder than the methods discussed earlier

when examining VARs, vector error correction models, and IRFs. We must decide in each case

whether or not it is good enough.

If not, then we may wish to employ a panel VAR. These are demanding.
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