
Panel VARS and Local Projections1

Having studied both vector autoregressions and panel data models, we now consider a pair

of extensions. Both are especially useful if we have a panel with a high enough T so that a VAR

type approach is possibly preferable to panel data approaches that include either lags or time

fixed effects. The first approach is the panel VAR. The second is the local projection method.

Panel VARs

Much of this section follows this paper, which provides a general discussion of PVARs, Stata

files to run them, and some good examples:

Abrigo, Michael R.M. and Inessa Love. February 2015. “Estimation of Panel Vector Autore-

gression in Stata: a Package of Programs.” Working Papers.

Suppose that we have a panel that, without loss of generality, is balanced. There are N

cross sections, and T periods. For the same reasons that we wish to run a VAR with a single

cross section (estimating lagged effects and dealing with endogeneity), we wish to run a panel

VAR with these data. For each cross section yit is a kx1 vector with k endogenous variables. We

may also include exogenous variables in the specification, but because they do not substantially

affect the analysis that follows, I exclude them.

The most obvious approach may be to simply to estimate a single VAR that includes all

variables for all cross sections:

y1t = α1 + β1,1,1y1t−1 + β1,2,1y2t−1 + ...β1,N,1yNt−1...+ β1,1,Py1t−p....+ β1,N,PyNt−p + u1,t

(1)

y2t = α2 + β2,1,1y1t−1 + β2,2,1y2t−1 + ...β2,N,1yNt−1...+ β2,1,Py1t−p....+ β2,N,PyNt−p + u2,t

(2)

...

(3)

yNt = α1 + βN,1,1y1t−1 + βN,2,1y2t−1 + ...βN,N,1yNt−1...+ βN,1,PyNt−p....+ βN,N,PyNt−p + uN,t

(4)

1These are undergraduate lecture notes. They do not represent academic work. Expect typos, sloppy
formatting, and occasional (possibly stupefying) errors.
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Recall that y1t and α1 include k elements. We thus have kN endogenous variables. Each β

also includes k2 elements. If there are p lags in the VAR, then there will be Np such matrices.

There are thus Npk2 + k2 regression coefficients. So we run our specification and we get the

following:

This is an example of the curse of dimensionality. Npk + k will almost certainly be far

larger than NT , our sample size, rendering this approach infeasible.

The inclusion of variables from different cross sections in a PVAR (as shown above) is known

as “dynamic interdependencies.” To be able to practically estimate a PVAR, we must be willing

to make assumptions that eliminate most or all of these dynamic interdependencies. The process

is not unlike when we imposed identifying restrictions to calculate our orthogonalized IRFs when

doing ordinary VARs.

Love and Zicchino (2006)

We will focus on the approach of Love and Zicchino (2006) for two reasons. First, its pretty

easy. Second, it is the only method that has Stata files publicly available. This approach

imposes that the slope coefficients (the βs from earlier) are the same for all cross sections. It

thus shuts down most of the possible dynamic interdependencies and instead is conceptually

closer to taking an average (though not mathematically identical) of the slope coefficients:

yit = A1yit−1 + A2yit−2 + ...Apyit−p + uit + eit (5)

where eit is a vector of error terms and uit are fixed effects that may sometimes be excluded

depending on the application.
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A big advantage of this approach is that it results in a number of parameters to estimate

that may be feasible. Each A includes k2 elements. Each uit includes k elements as well. There

are thus k2p+ kN parameters to be estimated and it is far more likely that this approach will

be feasible.

This approach makes PVARS more feasible than individual VARs for each cross section.

Suppose, for example, that we have 10 countries and wish to run a VAR(2) with where T only

equals 10. Even if we only include 2 endogenous variables, that leaves 6 parameters to be

estimated for each country. And with only 20 observations, estimation is dubious at best.

Suppose, however, that we decide to run a PVAR instead. With fixed effects included, we

still only have 24 parameters to be estimated, 4 if we are willing to dispense with them (whether

this makes sense depends on the application). We now, however, have 200 observations making

estimation far more promising.

This example also, however, illustrates the big limitation of this method. As always, our

results are only as good as the assumptions that underpin them. If we believe that slope

coefficients are highly heterogeneous or that dynamic interdependencies are critical, then our

assumptions are poor and our results are invalid. We also lose the ability to compare an IRF

for two different cross sectional entities that are included within a single PVAR.

There are two other complications. First, we have to deal with potential non-stationarity.

We can do this by estimating the first difference of yit. Often, however, it is better to instead

use the Helmert Transformation instead of the first difference. The Helmert Transformation

subtracts off the mean of all future observations.

At first glance, it seems as if we could estimate (5) with OLS, and then compute orthogo-

nalized IRFs just as we did with regular VARs. The latter is true. For the former, however,

we run into the problem that fixed effects is biased if we include lagged dependent variables

as regressors. This bias disappears as T → ∞, but remains large for fairly large finite sam-

ples. The solution is to run a GMM estimator that uses instruments to correct for the bias

that comes from including additional (beyond the lags already included as part of the PVAR)

lagged dependent variables. We follow Arrellano and Bover (1995) who propose using lagged

instruments and levels as instruments.2 Because we use additional lags, we eliminate additional

observations which may be problematic if T is low.

2Arellano, M. and O. Bover. 1995. “Another look at the instrumental variable estimation of error-components
model.” Journal of Econometrics.”
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Love’s Stata files

PVAR estimation is not feasible with Stata as you find it. Instead you must install Inessa

Love’s ado files. This is easy:

1. Go to her homepage and download the files.

2. Wherever Stata is installed, go to ado/base/p and simply paste them in.

3. If you use these files in a paper, you should acknowledge their use and thank her for

making them publicly available on the title page.

The newest version of these ado files work just like the files for VARS except that you add

a “p” to the front of the command. “pvar” thus does the estimation, “pvarsoc” allows you to

choose the appropriate lag length using various information criteria, and “pirf” compute the

impulse response functions.

A Quick Example

In Section 4.1, the authors consider an example of women aged 14 to 26 in the National

Longitudinal Survey data between 1968 and 1978:

pvarsoc wage hours, maxlag(3) pvaropts(instl(1/4))

Like “varsoc,” this command allows us to choose the lag length. The option, “pvaropts(instl(1/4))”

tells Stata to use 4 lags as instruments in GMM. The results (page 19) suggest just one lag.

The next lag conducts the estimation:

pvar wage hours, instl(1/4)

Because one lag is the default, the lags instruction is omitted. Stata omits any observation

with missing data, including with the instruments. We can instead treat missing instruments

as zeros using the “gmmstyle” option.

The authors use the “pvarstable, graph” command. This calculates the modulus of the

PVARs eigenvalues and checks if they are inside the unit circle. The resulting IRFs will be

stationary if and only if all of them are inside the unit circle. the “varstable” command does

the same for VARs.
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The authors also report a variance decomposition. A variance decomposition is the second

most commonly reported result from a VAR or PVAR. This results states that after X periods,

Y fraction of one variable’s variance is explained by shocks to another variable. In this example,

of the variance in the wage that results from the shocks 10 periods ago, 94% comes from shocks

to the wage and 6% comes from shocks to hours.

pvarfevd, mc(200) save(“fevd.dta”)

Finally, IRFs are computed in much the same way as for VARs:

pvarirf, mc(200) oirf byopt(yrescale)

The “byopt(yrescale)” option fixes that annoying scaling problem when we graph IRFs.

Local Projections

Jorda (2005) argues against the widespread use of VARS (including panel VARS).3 Instead,

he proposes that researchers use a local projection to obtain IRFs instead. Local projections

can be very simple and are typically estimated using just OLS with robust standard errors. To

illustrate how they work, we start with a simple univariate example. Suppose that we wish to

generate an IRF for a shock to xt on itself. The first step is simply to choose the size of the

shock, ū. At the time of the shock, E[xt], the point estimate for the shock at the time of impact

(which has been set as period t) is then simply x̄+ ū, where x̄ is typically the mean.

The next step is to choose, using an information criteria, how many lags to include in the

estimated autoregressive process. Suppose that we choose two lags. The next period of the

IRF function is then obtained by regressing xt on two lags of itself:

xt = α + β1xt−1 + β2xt−2 + ut (6)

E[xt+1], the IRF estimate for the period after the shock is then α+β1(x̄+ ū) +β2x̄, and the

confidence interval may be computed using the standard errors of the regression coefficients. So

far, this is no different than an ordinary autoregression. Were we doing a simple autoregression

we would simply iterate forward to obtain E[xt+2]

3Jorda. O. 2005. “Estimation and Inference of Impulse Responses by Local Projections.” American Eco-
nomic Review, 95(1): 161-182.
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E[xt+2] = α + β1E[xt+1] + β2(x̄+ ū) (7)

In words, we use the one period ahead expectation to form the two-period ahead expectation.

The local projection method now departs from this approach. It instead forms E[xt+2], and

each subsequent period, using a separate OLS regression. To obtain the IRF for t + 2, two

periods after the shock, we now regress xt on xt−2 and xt−3.

xt = α + β1xt−2 + β2xt−3 + ut (8)

Again, E[xt+2] = α+β1(x̄+ū)+β2x̄ and it is again straightforward to compute the confidence

interval. But now, the regression coefficients take different values. Each period gets its own

regression. Continuing:

xt = α + β1xt−3 + β2xt−4 + ut (9)

and E[xt+3] = α + β1(x̄+ ū) + β2x̄).

We now consider the possible advantages of this approach:

1. It is very simple, only relying simple OLS with robust standard errors. This is not a big deal

in this univariate example, but local projections will be very useful to avoid dealing with some

of the nastier issues that pop up in VARs.

2. We rarely know the true data generating process. In reality, the DGP is unlikely to be

perfectly represented by a VAR. Suppose, for example, that (6) is misspecified. E[xt+1] thus

contains an additional source of error. Note that in (7), E[xt+1] is used to compute E[xt+2].

Thus any misspecification in E[xt+1] is compounded forward. This is often cited as the main

benefit. Local projections may be less vulnerable to misspecification because each period in the

IRF gets its own regression instead of relying on the iteration of older, possibly misspecified,

expectations.

3. Suppose that the model’s dynamics are exotic. An IRF may, for example, display a hump

shape pattern for nine periods followed by an abrupt spike in period 10. A conventional VAR

can only capture this type of non-linearity if it includes many lags. Evan a low order LP may

pick this up, however. LPs may better capture non-linearities.

There are, however, disadvantages.
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1. Suppose that a VAR is the correct specification. Then (7) is the correct way to form the

two period ahead expectation. The local projection approach will be consistent but inefficient.

With enough data, it will be able to replicate the IRF from the VAR method. But for small

samples, there will be an efficiency loss. Jorda (2005) argues that in the examples he considers,

this efficiency loss is small.

2. To get the nth period ahead in an IRF using the LP method, we need at least n lags. If T

is small, then this may cause us to run short on observations and the confidence intervals for

distant periods in the IRFs may become large. This is not an issue using the VAR approach

where even a VAR(1) can be used to compute an IRF far into the future.

We can now extend this example, with just a little added complexity, to the case of a VAR

where xt is now a vector of endogenous variables. This reveals another issue (which may be seen

as a weakness or strength) with the LP method. There is less consensus with how to deal with

the issue of contemporaneous causation. One approach is to risk endogeneity in the impact

IRFs by including contemporaneous variables in the specification. Another is to exclude them

which will rule out contemporaneous effects on shocks to other variables. This demonstrates

another strength of the LP method, however. Not only does each period get its own regression,

so does each variable in the system.

Suppose that we have a two variable system, A and B. Using the LP method, we can

separately choose different lag lengths for A and B in each regression. There may be four

distinct values. If we are confident that A can affect B contemporaneously, but not vice-versa,

then we can include B’s current value in the regression for A.

An Example

We now briefly discuss the following paper: Rana, G.A., and P. Shea. 2015. “Estimating

the causal relationship between foreclosures and unemployment during the great recession.”

Economics Letters, Vol. 134. p. 90-93.

It seems clear that problems in the housing market were the proximate cause of the Great

Recession. But it is less clear whether lower housing prices or higher foreclosures were the more

important channel. There are mechanisms whereby both could increase unemployment, but

macroeconomic theory mostly focuses on the former. We try to answer how housing caused the

recession. Because this is a macroeconomic system, VAR type analysis is desirable with IRFs

being the main type of result. We choose to use the LP approach.
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The data are a panel of 11 U.S. states. The four variables are housing prices, effective

mortgage rates, the U-3 unemployment rate, and foreclosures. The data are quarterly and run

from 2003-2013. We determine that housing prices are I(2) while the other variables are all

I(1).

Because we use the LP method, each period for each variable gets its own regression. We

include the contemporaneous values of all variables in our specification (risking endogeneity in

the impact period), and choose different lag structures for all four variables using adjusted R2.

The main result is that higher foreclosures seem to be more important than lower housing

prices. We write about the former:

The second column shows that higher foreclosures have a large, positive, and sta-

tistically significant effect on the U-3 unemployment rate. Integrating, the effect on

the level of unemployment is a 6.4% increase after 3 years. This result supports the

result of Marshall and Shea (2015) where mortgage default amplifies the business

cycle. The third column shows that higher foreclosures also cause a large decline in

housing prices.

About the latter, we add:

The second column shows that higher housing prices have only small effects on

unemployment. The effect is only statistically significant in 3 of 12 periods, and

integrating, we find only a cumulative decline in the unemployment rate of 0.36%

after 3 years. This result shows that some of the rise in unemployment from a shock

to foreclosures (from Fig. 2) occurs because more foreclosures cause lower housing

prices which then causes more unemployment.

Figure 1: Response to a Shock to Foreclosures
∆Foreclosures ∆Unemployment ∆2Housing Prices
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Figure 2: Response to a Shock to Housing Prices
∆Foreclosures ∆Unemployment ∆2Housing Prices
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