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Abstract

I develop a framework where agents forecast despite knowing only a subset of the variables in

the true economic model. I then examine whether the discovery of an additional variable improves

forecasting. Because agents do not know all of the variables in the model, they form expectations

using bounded rationality. Under adaptive learning, agents form expectations by regressing a

variable of interest on the revealed variables. Surprisingly, I find that the revelation of an addi-

tional variable often worsens forecasts, an event deemed a red herring, with probability greater

than one-half. If the model includes endogenous variables that depend on agents’ expectations,

then revealing a new variable will occasionally lead to a catastrophic worsening of forecast accu-

racy. Under structural coefficients expectations, agents know how each revealed variable appears

in the true model and they use this information to forecast. Now, the revelation of a new variable

improves forecasting more often than not. I then apply the framework to a calibrated New Keyne-

sian model and find that the revelation of a new variable usually worsens forecasting. Collectively,

these results show that learning about a new variable may actually make forecasts less accurate.
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1 Introduction

Hendry and Clements (2003) state that “all econometric models are mis-specified.”1 Indeed, most

econometricians would agree that any interesting econometric estimate surely omits some variables,

and that the goal of econometricians should be to minimize this bias or convincingly argue that it

works in their favor. Likewise, even good macroeconomic theory models, by design, omit some

major aspects of the economy. This paper does not argue that models should be made larger to reduce

this misspecification. Instead, it examines the effect of this type of misspecification in a theoretical

self-referential model where agents form forecasts despite only knowing some of the variables that

appear in the true model. It finds that learning about an additional variable may actually worsen

forecasting.

The baseline approach in macroeconomic theory is to examine a model after it has converged to its

rational expectations equilibrium (REE). Rational expectations assume that agents know the model’s

reduced form solution, and use this solution to form optimal forecasts. An alternative approach is to

instead assume bounded rationality where agents must forecast in the presence of some informational

limitation. An example of bounded rationality that has attracted considerable interest recently is the

restricted perceptions equilibrium (RPE), where agents forecast based on only a subset of the variables

that appear in the model’s solution.2 A RPE is a good way to model the omissions that exist in actual

empirical and theoretical macroeconomic work.

This paper addresses a novel question related to restricted perceptions equilibria. If economic the-

ory reveals a new variable, does this new information make forecasts better or worse? Given enough

data, we might expect the answer to be yes if agents are simply forecasting an exogenous process.

In this paper, however, agents choose the model’s endogenous variable based on their expectation

of its future value. Because the model is self-referential in this way, the revelation of a new vari-

able changes the data generating process so that forecasts based on the old data generating process

may be biased. As a result, revelations often cause worse forecasts, in some cases with probability

greater than one-half. I refer to cases where the revelation of a new variable worsens forecasts as a red

1This sentiment is also the theme of several econometric textbooks including Hendry and Clement (1998), and White

(1994).
2For a more detailed discussion of restricted perceptions equilibria, see Branch and Evans (2006).
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herring.3 Furthermore, this bias occasionally causes the model to move close to a singularity where

forecast errors become exceptionally large.

Most macroeconomic work analyzes models after convergence to rational expectations has oc-

curred. Even the bounded rationality literature, including work on restricted perceptions equilibria,

typically limits its analyis to whether convergence (possibly to rational expectations) occurs, or to the

model’s dynamics after convergence.4 The process of convergence is thus immplicitly assumed to be

either inheriently uninteresting, or to occur fast enough so that it may safely be ignored.

This paper instead focuses on the process of convergence after the revelation of a new variable.

By showing that agents’ discounted sum of squared forecasts errors are often larger after a revelation,

it shows that focusing only on a model post-convergence may obscure important results. Although

the model does converge to rational expectations as all variables are revealed, and forecast errors go

to zero as this convergence occurs, forecast errors do not steadily decline. Rather, as new variables

are revealed, forecast errors often initially increase. Sufficiently clever agents might even stop relying

on newly revealed variables altogether, preventing convergence from ever occurring.

Macroeconomic theory may be viewed as a process of “revealing” relevant variables to forecasters.

Consider a few examples, accepting their contributions for the sake of argument. Keynes’s General

Theory (1936) may be interpreted as revealing the importance of nominal rigidities. Most models

of business cycles now include some type of productivity shock. The work of Kydland and Prescott

(1982), which demonstrated that exogenous variation in the Solow Residual could help explain aggre-

gate fluctuations, may thus be interpreted as theory revealing the importance of productivity shocks

to agents in the true model. Likewise, the animal spirits hypothesis predicts that agents’ self-fulfilling

beliefs may have important aggregate effects. The work of Farmer and Guo (1994) may thus be in-

terpreted as revealing the importance of indeterminacy to forecasters. Although the set of major and

genuine theoretical contributions is debatable, many applied macroeconomic theorists hope that their

work ultimately enlightens agents attempting to forecast aggregate variables. This paper models this

process and shows that even genuine theoretical advances may yield adverse outcomes more often

3A red herring is a metaphor used to describe an object that distracts an investigation, diverts attention to a side issue,

or provides useless but confusing information. Its origins date to seventeenth century England where a herring, reddened

by salting and smoking, was used to confuse hounds pursuing a fox or other prey. See Quinion (2002) for more details.
4Under constant gain learning, which this paper employs, the learning algorithm often converges to a distribution

around rational expectations rather than rational expectations themselves.
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than not.

This paper examines the effect of theoretical revelations, like those from the preceding paragraph,

in a self-referential model where agents must forecast despite only knowing a subset of the variables

that appear in the true model. In this environment, expectations are formed in two, boundedly rational,

ways. Under structural coefficients expectations, economic theory reveals not only a subset of relevant

variables, but also the associated structural coefficients in the underlying theoretical model. Agents

then form expectations using these coefficients and without relying on past data. Expectations are not

fully rational, however, because agents do not know any of the structural coefficients associated with

the unrevealed variables.

The second type of expectations formation is adaptive learning where agents use all revealed

variables as regressors to estimate the variable of interest. Adaptive learning typically relaxes ratio-

nal expectations’ strong informational requirements by assuming that agents form expectations using

standard econometric techniques. The adaptive learning hypothesis is supported by the observation

that professional forecasters almost uniformly rely on empirical estimation, are uncertain of the un-

derlying theoretical model, and rarely issue predictions without the aid of extensive data.

I develop a simple linear model where the variable that agents forecast depends on large sets of

exogenous and endogenous variables. The vector of endogenous variables depends on both the set of

exogenous variables and agents’ expectations. At any time, economic theory has revealed only subsets

of both the exogenous and endogenous variables. I then address two questions related to the revelation

of a new variable. One, does the revelation of an additional variable improve agents’ forecasts? Under

structural coefficients expectations, the revelation of an additional variable improves forecasting with

probability between one-half and one. If agents seek to minimize their discounted squared forecast

errors, they are therefore generally better off using newly revealed variables to forecast. There exists,

however, a significant (though less than one-half) probability that a revelation may be a red herring

which worsens forecasts.

Under adaptive learning, there are two sources of red herrings. Although an additional variable

necessarily improves forecasting at the fixed point of the learning process, it also introduces addi-

tional noise into the system.5 Estimation after the revelation is less parsimonious and may therefore

5Here, the fixed point of the learning process refers to value of the regression coefficients as the sample size under the

new data generating process goes to infinity.
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yield a larger mean squared error out-of-sample. This source frequently causes red herrings, but the

accompanying worsening of forecasts is relatively small. The second source of red herrings is the

Lucas Critique (1976). The revelation of an additional variable changes both the way that agents form

expectations and the data generating process. If agents retroactively regress the variable of interest on

an expanded set of regressors, then the resulting estimate will be biased. The Lucas Critique results

in a small but positive probability that this bias will move the model arbitrarily close to a singularity

where the endogenous variables and the mean squared forecast error explode. This type of red herring

may therefore result in a catastrophic worsening of forecasts.

Under adaptive learning, a newly revealed endogenous variable is a red herring with a signifi-

cant, but usually less than one-half, probability. The possibility of catastrophic red herrings, however,

causes the accompanying average welfare loss to be positive in four of the eleven calibrations, in-

cluding two with heightened levels of endogeneity. A newly revealed exogenous variable is always a

red herring with probability usually greater than one-half. Catastrophic red herrings may also occur

upon the revelation of an exogenous variable, and, on average, forecasts worsen for all eleven calibra-

tions. Collectively, these results suggest that genuine theoretical breakthroughs often destabilize the

economy.

Structural coefficients expectations assume that theory reveals not only the existence of a new

variable, but also exactly how this new variable appears in the true model. This type of expectations

formation is thus vulnerable to the same critique that has been controversially levied against rational

expectations; that it endows agents with implausibly high amounts of knowledge about the true model.

In contrast, adaptive learning assumes that agents only learn about the existence of a new variable and

must estimate how it affects the model through econometric methods. Agents are thus unsure both

about which variables appear in the model and the correct coefficients for the known variables whereas

under structural coefficients expectations agenst are only unaware of the former. Thus, a reader might

conclude that only adaptive learning is feasible and that a comparison between the two is of minimal

concern.

Because the critique that rational expectations endows agents with too much knowledge is not

entirely accepted, the other question that this paper explores is whether agents are better off choos-

ing to use structural coefficients expectations or adaptive learning, assuming that both are feasible.

Because structural coefficients expectations fail to exploit the correlations between the revealed and
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unrevealed variables, they deliver conditionally biased forecasts. Adaptive learning is initially biased,

but converges towards delivering unbiased forecasts after the new variable is revealed.6 Adaptive

learning’s econometric algorithm also adds additional noise into the system. The results show that if

the exogenous and endogenous variables are sufficiently correlated, then agents are better off using

adaptive learning in order to exploit the correlation between known and unknown variables. If this

correlation is weak, however, then structural coefficients expectations outperform adaptive learning.

How agents form expectations is among the most controversial questions in current macroeco-

nomics. This paper contributes to the literature that argues that rational expectations endow agents

with too much information. The most popular alternative to rational expectations is adaptive learning

which typically assumes that agents run a properly specified regression, free from omitted variable

bias. To properly specify their econometric models, however, agents must have considerable knowl-

edge about the true model. Like rational expectations, standard adaptive learning is therefore vulnera-

ble to criticism for endowing its agents with excessive information. Several other papers examine this

issue by modeling adaptive learning where agents use underparameterized models and then examining

the resulting RPE. Cho and Kasa (2015) examine Sargent’s “Conquest” (1999) model where agents

use adaptive learning to estimate the endogenous data generating process. In addition to uncertainty

about the coefficients, agents are also unsure of the correct specification. Agents therefore perform

tests among a set of underparameterized models. Branch and Evans (2006) examine a cobweb model

where agents choose among a set of underparameterized specifications. The authors demonstrate that

equilibria may occur where agents heterogeneously rely on different specifications. Evans and Ramey

(2006) assume that agents use underparameterized, adaptive expectations in a model of the New Key-

nesian Phillips Curve. They allow agents to select the optimal weights on the previous observation

versus the sample mean and show that the Lucas Critique (1976) still applies to much of the parameter

space. Unlike the present paper, each of these related papers assumes that agents choose among a set

of underparameterized models with constant sets of regressors. This paper is the first to examine how

discovering a new variable affects the model’s behavior.

Most of the analysis in this paper uses a general model. Section 3, however, applies these results

to the New Keynesian framework, by far the most popular modelling approach for analyzing mon-

6The coefficient estimates, however, suffer from omitted variable bias. In the model, agents only care about the squared

error of their forecasts and not their parameter estimates.
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etary policy.7 Macroeconomists often suggest that policy makers created excessive inflation in U.S.

during the 1960’s and 1970’s by mistakenly believing in a stable long-run tradeoff between inflation

and output. This story may be interpreted as an example of a red herring. If we accept the current

state of monetary theory, then the development of the Phillips Curve represents a genuine theoretical

breakthrough; the New Keynesian framework posits a similar, though short-run, relationship. Due to

endogeneity and insufficient understanding of other important variables, such as expectations, how-

ever, policy makers misunderstood the true relationship between inflation and output. As a result,

the discovery of the Phillips Curve may have managed to de-stabilize the economy. In this example,

all agents use adaptive learning to forecast inflation and output, but their learning algorithms omit a

vector of unrevealed variables. Upon the revelation of an additional variable, the results of the gen-

eral model carry through. For the calibrated New Keynesian Model, the revelation of a new variable

results in a red herring between 69% and 85% of the time, and results in a catastrophic worsening of

forecasts between 0.7% and 3.8% of the time.

The paper is organized as follows. Section 2 develops the model and examines the revelation of

new variables under structural coefficients expectations and adaptive learning. Section 3 presents an

application to a calibrated New Keynesian model. Section 4 concludes.

2 The Model and Structural Coefficients Expectations

This paper relies on a version of Sargent’s (1999) “Conquest Model:”

Ut = U∗ − θ(yt − xt) (1)

The policy maker chooses a policy, xt, that determines the unemployment rate, Ut. The policy

maker is unable to observe the partially exogenous variable, yt, which depends on a large number

of observable variables. The policy maker’s objective is simply to stabilize unemployment around

U∗ each period. This entails setting xt = yet . The policy maker’s problem is therefore equivalent to

forming the best forecast of yt.

7For details on the New Keynesian model, see Woodford (2003). Forecasters, however, typically rely on larger more

complex versions.
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yt = Azt +Bgt (2)

zt = Cyet +Dgt + ut (3)

yt is a scalar. gt is a M x 1 vector of exogenous variables that affect yt. zt is a N x 1 vector of

endogenous variables that also affect yt. zt itself depends on gt and ut, a N x 1 vector of unobservable

shocks. The inclusion of ut ensures that the endogenous variables have independent explanatory

power and are not simply linear combinations of the exogenous variables. Additionally, zt depends

on the policy, yet . For example, it is natural to interpret yt as inflation. In this example, zt may include

consumption and labor supply, both of which themselves likely depend on the policy instrument.

I assume that each element of gt and ut is independently and identically distributed, N(0, σ2
g) and

N(0, σ2
u).

The policy maker does not generally know all of the variables that affect yt. At time t, economic

theory has revealed the first n elements of zt (denoted by znt ), and the first m elements of gt (denoted

by gmt ). Note, however, that yt depends on the entire vectors zt and gt, and that zt depends on the

entire vector gt, instead of only on the revealed components. As in most macroeconomic models,

I assume that there exists a continuum of measure one of micro-level agents, whose behavior then

determines zt and yt. The unrevealed elements of zt and gt are therefore the result of macroeconomic

theorists’ inability to understand all elements of the micro-level optimization process. This limitation

is then passed onto the policy maker who must forecast despite not knowing the full set of relevant

variables.

It is also possible that micro-level agents’ optimization depends on their forecast of the aggregate

variable yt. Throughout the paper, I assume that these agents experience the same limitations in fore-

casting aggregate variables as the policy maker, and that all expectations, yet , are therefore identical.8

Finally, I assume that the instantaneous loss function equals the squared forecast error: `t = (yt−

yet )
2 and for the remainder of the paper I evaluate welfare by calculating the sum agents’ discounted

squared forecast errors.9 The timing of the model works as follows: first, gt is drawn. Second, zt and

8A more general specification allows zt to depend on both yt, and ye
t . The paper’s major conclusions do not depend

on this distinction.
9Granger (1969) and Granger and Newbold (1986) show that minimizing a function of the mean squared forecast

error maximizes many welfare functions. Patton and Timmermann (2007), however, show that with asymmetric losses,
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yet are simultaneously determined. Finally, yt is determined based on gt and zt.

2.1 Structural Coefficients Expectations

In this subsection, I assume that economic theory has also revealed An (the first n elements of

A), and Bm (the first m elements of B) and that agents use these structural parameters to form their

expectations. I refer to this type of expectations formation as structural coefficients expectations:

yet = Anznt +Bmgmt (4)

znt = Cnyet +Dngt + unt (5)

If agents mistakenly believe that they know all of the variables that appear in the model, then

what they believe are rational expectations are, in fact, structural coefficients expectations. Structural

coefficients expectations thus have three appealing properties reminiscent of rational expectations.

First, both the unconditional expectational error, E[yt − yet ], and the expectational error conditional

on the available information, E[(yt−yet )|An, Bm, gmt , z
n
t ], equal zero. Second, the estimate is precise;

there is no estimation error associated with An, and Bm. Finally, because they are based on invariant

structural parameters, structural coefficients expectations are not vulnerable to the Lucas Critique

when economic theory reveals a new variable.

Because agents do not generally know the full model, structural coefficients expectations are not

fully rational. They are therefore not necessarily optimal and they do entail a significant disadvantage.

The revealed variables, znt and gmt are typically correlated with the unrevealed variables, z−nt and

g−mt . Regressing y on the revealed variables, as agents do under adaptive learning in Subsection 2.2,

exploits this correlation. Structural coefficients expectations, however, ignore this correlation and

therefore yield a worse in-sample fit than adaptive learning. The results of Subsection 2.2 show that

if the correlation between the revealed and unrevealed variables is sufficiently strong, then structural

minimizing the mean squared error may not be optimal. I thus re-calculate the results of this section assuming either that

welfare depends on the absolute value of the forecast error or that negative forecast errors are weighted between 0.1 and

10 times as much as positive forecast errors. The main results of this section are unaffected.
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coefficients expectations perform worse than adaptive learning. If this correlation is weak, however,

then the precision of structural coefficients expectations make them preferable.

The feasibility of structural coefficients expectations is questionable. Like rational expectations,

structural coefficients expectations assume that agents possess significant knowledge of the true model.

The motivation for the adaptive learning literature therefore suggests that agents are unable to form

structural coefficients expectations. This section, however, assumes that structural coefficients expec-

tations are feasible, and the remainder of the paper leaves this question open.

Substituting Equation (5) into Equation (4) yields agents’ expectation of yt.

yet = (1− AnCn)−1[AnDngt +Bmgmt + Anunt ] (6)

Agents’ loss may then be re-stated in terms of their knowledge, (n and m), and the vectors of

exogenous shocks, gt and ut.

`t = {((AC − 1)(1− AnCn)−1AnDn + AD +B)gt + Aut...

+[(AC − 1)(1− AnCn)−1](Bmgmt + Anunt )}2 (7)

Proposition 1: If agents are fully rational (m = M and n = N ), then agents’ loss, `t, equals zero.

Proof: If (m = M and n = N ), then An = A, Bm = B, Cn = C, gmt = gt, and utn = ut. Equation

(7) then reduces to `t = 0.

Proposition 1 demonstrates that departures from full rationality cause a positive loss. Structural

coefficients expectations and adaptive learning are two such departures. I now examine how the

former affects welfare.

Suppose, however, that agents use adaptive learning where yt is regressed on the set of revealed

variables. If theory reveals a new variable, then both the way that agents form expectations and the

data generating process for yt will also change. If agents retroactively regress yt on the expanded

set of variables, then the Lucas Critique applies, and the retroactive regression coefficients will be

biased relative to their optimal values for the new data generating process.10 If C equals a null matrix,

however, then the data generating process does not change and the Lucas Critique does not apply.

10This bias is in addition to the bias that results from omitted variables.
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Under structural coefficients expectations, agents rely on invariant structural parameters to form

expectations and the Lucas Critique does not apply regardless of the value of C. To simplify the

analysis for the remainder of this section, I therefore set C equal to a null matrix.11 I then re-write

agents’ loss under structural coefficients expectations:

`t = [(A−nD−n,m)gmt + [(A−nD−n,−m +B−m)g−mt + A−nu−nt ]2 (8)

where Dk,j is a matrix consisting of the first k rows and first j columns of D, and Dk,−j is matrix

consisting of the first k rows and all but the first j columns of D.

Consider the m + 1th exogenous variable, gt,m+1. This variable contributes to agents’ loss di-

rectly through the m + 1th element of B, b1,m+1, and indirectly though its effects on the unrevealed

endogenous variables, captured by the m + 1th element of A−nD−n,M . Under structural coefficients

expectations, if economic theory reveals gt,m+1, it also reveals its direct effect through b1,m+1. It is

likely that the direct effect of gt,m+1 is informative about its total effect. In this case, the revelation

will improve forecasting. With probability less than one-half, however, the direct effect may not be

representative of the total effect, agents’ forecasts will worsen, and the newly revealed variable is a

red herring. Similarly, the revelation of the n + 1th endogenous variable will likely increase welfare

but will also be a red herring with probability less than one-half.

Tedious but straightforward manipulation of Equation (8) allows agents’ expected loss for any

[A,B,D] to be re-stated as a function of the individual elements of the relevant matrices.

E[`t] = σ2
u

N∑
i=n+1

(a1,i)2 +
m∑
j=1

σ2
g [

N∑
i=n+1

N∑
k=n+1

a1,idi,ja1,kdk,j] + ...

M∑
j=m+1

σ2
g [

N∑
i=n+1

N∑
k=n+1

a1,idi,ja1,kdk,j + 2
N∑

i=n+1

a1,idi,jb1,j + (b1,j)2] (9)

where dk,j represents the individual element in the kth row and jth column of D. (This notation is

in contrast to Dk,j , which represents the first k rows and j columns of D.)

I now consider the effect if macroeconomic theorists reveal an additional variable to agents in

the model. I treat this revelation as exogenous event that is immediately accepted by all forecasters.

11The major results that follow in this section are unchanged for cases where C does not equal a null matrix. These

results are available upon request.
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Suppose that economic theory reveals them+1th exogenous variable. Equation (9) demonstrates that

the change in the expected ex-post loss equals:

E[∆`t|A,B,D]m+1,n = −σ2
g{(b1,m+1)2 + 2b1,m+1

N∑
i=n+1

a1,idi,m+1} (10)

Likewise, if economic theory reveals the n+ 1th endogenous variable, the change in the expected

ex-post loss equals:

E[∆`t|A,B,D]m,n+1 = −σ2
g{

M∑
j=1

[(a1,n+1dn+1,j)2 + 2a1,n+1dn+1,j
N∑

k=n+2

a1,kdk,j]...

+2
M∑

j=m+1

a1,n+1dn+1,jb1,j} − σ2
u(a

1,n+1)2 (11)

I assume that agents know the distributions of each element of [A,B,D]. Each element of

[A,B,D] is independently and identically distributed, N(0, σ2
q ), where q = a, b, d. I further assume

orthogonality across matrices by using the following variance-covariance matrix:


σ2
a 0 0

0 σ2
b 0

0 0 σ2
d

 (12)

Proposition 2: Ex-ante, the revelation of either the m + 1th exogenous variable or the n + 1th en-

dogenous variable results in a decreased expected loss.

Proof: Under the assumption of orthogonality from Equation (12), Equation (10) reduces toE[∆`t]
m+1,n =

−σ2
gσ

2
b < 0, and Equation (11) reduces to E[∆`t]

m,n+1 = −σ2
gσ

2
aσ

2
d − σ2

uσ
2
a < 0.

Proposition 2 shows that, ex-ante, agents are always better off relying on a newly discovered

variable because it is likely to result in a welfare improvement. Equations (10) and (11) demonstrate,

however, that for specific draws of [A,B,D], newly revealed exogenous or endogenous variables may

increase in an ex-post expected loss.

Proposition 3: The probability that the m + 1th exogenous variable is a red herring approaches zero

as σ2
b → ∞, σ2

a → 0, or σ2
d → 0. Likewise if m + 1 < M , then this probability approaches 1/2 as

σ2
b → 0, σ2

a →∞, or σ2
d →∞.
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Proof: By Equation (10), as σ2
b → ∞, E[∆`t|A,B,D]m+1,n → −∞. Likewise, as σ2

a → 0 or

σ2
d → 0, E[∆`t|A,B,D]m+1,n → −σ2

b < 0. Also as σ2
b → 0, σ2

a → ∞, or σ2
d → ∞, then

E[∆`t|A,B,D]m+1,n → 0, and because of the model’s symmetry, prob(E[∆`t|A,B,D]m+1,n >

0)→ 1/2.

If each element of B has a large variance, then the direct effect of the m+ 1th exogenous variable

dominates its indirect effect. The revelation of the direct effect, which accompanies the revelation of

the m + 1th exogenous variable, is therefore necessarily informative about its total effect. Likewise,

if A or D equal a null matrix, then there is no indirect effect. If σ2
b → 0, however, then the revelation

of a new element of B is uninformative and does not affect forecasting. As σ2
b → 0, it is also the case

that the welfare loss associated with a red herring approaches zero. If σ2
a →∞ or σ2

d →∞, then the

indirect effect of the revelation of gt,m+1 dominates its direct effect. In these cases, the welfare loss

associated with a red herring approaches infinity.

Proposition 4: The probability of the n + 1th endogenous variable being a red herring approaches

zero as σ2
a →∞, as σ2

d →∞, or as σ2
u →∞. Likewise if n+1 < N , then this probability approaches

one-half as σ2
b →∞.

Proof: By Equation (11), as σ2
a → ∞, σ2

d → ∞, or σ2
u → ∞, E[∆`t|A,B,D]m,n+1 → −∞.

Likewise as σ2
b →∞, E[∆`t|A,B,D]m,n+1 → 0, and because of the model’s symmetry,

prob(E[∆`t|A,B,D]m,n+1 > 0)→ 1/2.

If the importance of the endogenous variables dominates that of the exogenous variables, then the

information conveyed by the revelation of an endogenous variable is necessarily informative and that

variable cannot be a red herring. Proposition 3 states that the probability of an exogenous variable

being a red herring approaches zero as σ2
b → ∞. It is not the case, however, that the probability

of an endogenous variable being a red herring approaches 1/2 as σ2
b → 0. If the importance of the

exogenous variables dominates that of the endogenous variables, then the revelation of an endogenous

variable is not informative and the probability of that variable being a red herring approaches one-half.

If σ2
b →∞, then the associated expected welfare loss approaches infinity.

I now simulate the model to quantify the probability of a red herring under structural coefficients

expectations. For these simulations, I assume that N = M = 30. In the baseline case, I set σ2
a =

σ2
b = σ2

d = 0.25 and, σ2
g = σ2

u = 1. I then take 20,000 random draws from [A,B,D] and evaluate
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the likelihood of a red herring for all possible combinations of m and n. To access the effect of

the variance terms on the model, I also simulate three low variance cases where σ2
a, σ2

b , or σ2
d equal

1/16, and three high variance cases where σ2
a, σ2

b , or σ2
d equal 1. For the revelation of an endogenous

variable, I simulate two additional cases where σ2
u = 0.5, or σ2

u = 2.12

(FIGURE 1 HERE)

Figure 1 displays the probability of the 15th exogenous variable being a red herring upon its

revelation for each possible value of n. The middle line represents the baseline case. The probability

of a red herring approaches zero as n approaches N. The top line represents the calibration where σ2
B

is low, and the bottom line represents the calibration where σ2
B is high. Consistent with Proposition 3,

the probability of a red herring decreases as σ2
B increases. Although not shown in either Figure 1 or

Figure 2, the behavior of the high σ2
A and high σ2

D calibrations are nearly identical to the low σ2
B case.

Likewise, the low σ2
A and low σ2

D calibrations are nearly identical to the high σ2
B case.

(FIGURE 2 HERE)

Figure 2 graphs the likelihood that the mth exogenous variable is a red herring for n = 15. Once

again, higher values of σ2
B decrease the likelihood of a red herring.

(FIGURE 3 HERE)

Figure 3 plots the likelihood that the 15th endogenous variable is a red herring for different values

of m. The range of probabilities is similar to the results for the revelation of an exogenous variable.

Consistent with Proposition 4, higher values of σ2
B now increase the likelihood of a red herring.

Higher values of σ2
d and lower values of σ2

u also increase the probability of a red herring. Although

not shown in Figure 3, the low σ2
a calibration behaves almost identically to the high σ2

b calibration and

vice-versa.13

12The value of σ2
u does not affect the likelihood of red herrings upon the revelation of an exogenous variable.

13The results are similar if the nth endogenous variable is revealed for a fixed value of m.
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2.2 Adaptive Learning

Under structural coefficients expectations, when economic theory reveals an additional variable,

it also reveals the structural coefficients associated with that variable. This is reminiscent of rational

expectations where agents use a model’s reduced form solution to form their expectations. The adap-

tive learning literature often criticizes rational expectations for endowing agents with an unrealistic

amount of knowledge about the economy’s true model. Adaptive learning relaxes the informational

requirements of rational expectations by assuming that agents use standard econometric techniques

to estimate the model’s reduced form. It therefore typically assumes that agents must use adaptive

learning because they lack the information needed to form rational expectations. This justification is

easily extended to the present paper by assuming that agents are unable to form structural coefficients

expectations.

There is, however, an additional justification for examining adaptive learning in this paper. In the

model, agents would ideally use rational expectations where they know the structural coefficients on

all N + M endogenous and exogenous variables.14 The assumption that agents know only a fraction

of these variables, however, implies that agents cannot use rational expectations, but may rely in-

stead on structural coefficients expectations. Whereas rational expectations are certain to yield better

forecasts than adaptive learning, adaptive learning may or may not outperform structural coefficients

expectations. In this case, agents are better off choosing to use adaptive learning instead of structural

coefficients expectations. This section addresses two questions. First, are agents better off choosing

to discard structural coefficients expectations in favor of adaptive learning? Second, how likely and

significant are red herrings under the assumption that agents use adaptive learning?

Under rational expectations, agents form more accurate expectations than under adaptive learning.

The possibility that agents may be better off under adaptive learning arises only because agents may

possess structural coefficients expectations, not rational expectations. Several papers develop different

cases where agents prefer adaptive learning to rational expectations. The most common approach

allows agents to form rational expectations if and only if they incur an additional cost.15 If the cost

of rational expectations is sufficiently high, then some or all agents will prefer adaptive learning

14Proposition 1 shows agents’ loss under rational expectations always equals zero.
15See Evans and Ramey (1992), Brock and Hommes (1997), and Branch and McGough (2005) for prominent examples

from this literature.
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to rational expectations. Adam (2005) develops a model where agents learn adaptively and choose

between a correctly specified model (relative to rational expectations) and an underparameterized

model. If agents use the former specification, adaptive learning asymptotically converges to rational

expectations. If agents use the latter specification, however, the learning process causes both models

to be misspecified and it is possible that the latter model yields a better forecast on average. Learning

the misspecified model is optimal, however, only if agents have already been using that model.

To model adaptive learning, I assume that agents know that yt linearly depends on the revealed

endogenous and exogenous variables, but do not know the exact coefficients.

yet = aznt + bgmt (13)

Under adaptive learning, I assume that agents use recursive least squares to obtain at and bt. This

is similar to running an OLS regression of yt on zt and gt, and updating that regression each period as

new data become available. Equation (13) represents agents’ perceived law of motion (PLM).

By inserting agents’ PLM into Equations (2) and (3), I obtain the economy’s actual law of motion

(ALM).

yt = ACaznt + (ACb+ ADm +Bm)gmt + (AD−m +B−m)g−mt + ACut (14)

The mapping from the PLM to the ALM may therefore be written as:

T

 a

b

 =

 ACa

ACb+ ADm +Bm

 (15)

Under adaptive learning, it is not typically the case that a and b will converge to their structural

coefficients expectations or rational expectations values. This is therefore an example of a restricted

perceptions equilibrium. A restricted perceptions equilibrium is optimal in the class of PLMs that

agents are considering, but may be inferior to other types of PLMs. In this model, a restricted percep-

tions equilibrium implies that agents are forming the best possible econometric estimate, given that

they do not know all the variables included in the model.

To calculate the fixed points of the learning process, I project the ALM onto the PLM. It is conve-

nient to write both znt and yt as functions of gmt , g−mt , unt , and u−nt .
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znt = αgmt + βg−mt + ζunt (16)

where α = (I − Cna)−1(Cnb+Dn,m), β = (I − Cna)−1Dn,−m, and ζ = (I − Cna)−1.

yt = χgmt + δg−mt + ωunt + A−nu−nt (17)

where χ = AC(1−aCn)−1a(Dn,m+Cnb)+ADN,m+ACb+Bm, δ = AC(1−aCn)−1aDn,−m+

ADN,−m +B−m, and ω = An + AC(1− aCn)−1a.

V ar

 znt

gmt

 =

 σ2
g(αα

′
+ ββ

′
) + σ2

uζζ
′
σ2
gα

σ2
gα

′
σ2
gI(m)

 (18)

Cov


 znt

gmt

 , yt

 =

 σ2
g(αχ

′
+ βδ

′
) + σ2

uζω
′

σ2
gχ

′

 (19)

The fixed point of the learning process is thus given by:

T

 a

b

 =

 σ2
g(αα

′
+ ββ

′
) + σ2

uζζ
′
σ2
gα

σ2
gα

′
σ2
gI(m)


−1  σ2

g(αχ
′
+ βδ

′
) + σ2

uζω
′

σ2
gχ

′

 (20)

For simplicity, I assume that agents do not include an intercept in their regression. If agents do

include an intercept, then the fixed point of the intercept estimate equals zero.

The system is stable under adaptive learning if the learning coefficients remain in the neighbor-

hood of their restricted perceptions equilibrium values. To evaluate stability under learning, I use the

related concept of E-Stability. Evans and Honkapohja (2001) demonstrate that under general condi-

tions, a model is stable under learning if and only if it is E-Stable. E-Stability maps from the PLM to

the ALM using the E-Stability differential equation.

d/dτ

 a

b

 = T

 a

b

−
 a

b

 (21)

If each eigenvalue of the Jacobian of the right hand side of Equation (21) has real parts less than

zero when evaluated at its fixed point, then the model is E-Stable. Evaluating this condition using the

ALM, Equation (14), and the PLM, Equation (13), shows that the necessary and sufficient condition

for E-Stability is that AC < 1.
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There are two sources of red herrings under adaptive learning. The first source is related to the

added noise that an additional regressor adds to the process. It is necessarily true that including an

additional regressor results in an equal or better in-sample fit than before its inclusion. Likewise the

new restricted perceptions equilibrium performs better than the older equilibrium at their respective

fixed points. Often, however, the inclusion of an additional regressor will introduce enough noise to

the estimate so that the enlarged set of regressors provides a worse out-of-sample fit than the original

set of regressors. In this case, forecasts worsen, and the newly revealed variable is a red herring.

If the model includes endogeneity (neither A nor C are null matrices), then the Lucas Critique is

a second source of red herrings. I assume that once theory reveals the n + 1th endogenous variable,

agents collect past data for that variable and regress y on zn+1 and gm. Because yt depends on its

expectation, however, the revelation of an additional endogenous variable changes the underlying

data generating process. The fixed points of at and bt using old data may therefore be significantly

different than their fixed points in the new restricted perceptions equilibrium. While the learning

process returns at and bt to the neighborhood of their restricted perceptions equilibrium values, agents

may make poor forecasts. If their discount factor is sufficiently small, then the revelation of the new

variable may result in a larger discounted loss. The same analysis applies if theory reveals the m+1th

exogenous variable, and agents retroactively regress y on zn and gm+1.

To simulate adaptive learning, I assume that agents estimate Equation (2) using recursive least

squares. Agents’ (n+m) x 1 vector of regressors, φ = [at, bt]
′, at time t is updated according to:

φt = φt−1 + γR−1
t φ′t−1(yt−1 − at−1z

n
t−1 − bt−1g

m
t−1) (22)

Rt = (1− γ)Rt−1 + γ(φt−1φ
′
t−1) (23)

This type of recursive least squares is similar to running an OLS regression each period except

that the gain (γ) represents the weight placed on the most recent observation. Under standard OLS,

the gain equals the inverse of the sample size and each observation counts equally. Equations (22)

and (23) are an example of constant-gain learning where agents place extra weight on more recent

observations.16 Constant-gain learning is a popular way to model learning when the model that agents

16For more details on constant-gain learning, see Sargent (1999), and Evans and Honkapohja (2001).
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estimate is subject to structural change, such as the revelation of a new variable. In the absence of

constant-gain learning, agents would be even more vulnerable to the Lucas Critique.17 Evans and

Honkapohja (2001) show that under constant-gain learning with a sufficiently small gain, E-Stability

generally implies that the learning coefficients converge to normal distributions with means equal to

their fixed points and variances proportional to the gain.

Asymptotically, adaptive learning dominates structural coefficients expectations. Although it

yields biased regression coefficients if any variables are unrevealed, the resulting expectation of yt

is unbiased. In the absence of econometric noise, the ensuing forecasts are optimal subject to not

knowing the unrevealed variables. Under structural coefficients expectations, a = An and b = Bm.

Structural coefficients expectations therefore provide noiseless coefficients, but at the expense of ig-

noring the correlation between znt and g−mt , and thus being a suboptimal projection. The ensuing

estimates are thus biased, conditional on the entire history of the model’s variables.

Under the learning algorithm from Equations (22) and (23), there are two mechanisms whereby

structural coefficients expectations may outperform adaptive learning. First, persistent learning dy-

namics add econometric noise to the forecasts generated by adaptive learning. Second, the occasional

revelation of an additional variable adds bias to the learning algorithm through the Lucas Critique, and

also prevents the learning algorithm from converging to its asymptotic properties even if agents use a

decreasing gain. It is thus not obvious which type of expectations formation yields smaller errors.

Under structural coefficients expectations, the revelation of a new endogenous variable increases

agents’ expected loss with probability between zero and one-half. I now examine the welfare effects

of discovering a new endogenous variable by simulating the model under adaptive learning. I begin

the learning process by setting φ equal to a null vector and imposing a 1000 period burn to minimize

the effects of this initial condition. Each period, I draw gt from its distribution while using a gain

equal to 0.005. I then calculate agents’ loss for 500 additional periods under three different scenarios.

In the first scenario, economic theory reveals the n + 1th endogenous variables and agents use this

additional variable to forecast yt. I assume that agents are able to obtain past data on the newly

revealed variable, and that they then retroactively run the learning algorithm from Equations (22) and

(23) to include the newly revealed variable. The expanded specification is then used for forecasting.

17A higher gain eliminates the bias from the system faster, but increases the variance of the learning parameters. Solving

for and studying the optimal gain is left for future research.
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In the second scenario, economic theory does not reveal the new variable and the model’s behavior is

unchanged from the burn period. In the third scenario, I assume that economic theory does reveal the

new variable but that agents possess structural coefficients expectations as discussed in Subsection

(2.1).18 I then calculate agents’ discounted loss under all three cases.

To limit computational time, I do not simulate every pair of m and n. Instead, I simulate every

pair where m equals 2,5,8... and n initially equals 2,5,8,... I conduct 500 simulations for each pair of

m and n. In all simulations, I set σ2
g = 1. My baseline calibration sets σ2

j = 0.25 for j = a, b, c, d,

σ2
u = 1, and assumes that agents use a discount factor of 0.99. For comparison, I consider several

other calibrations. I simulate five high variance cases where σ2
j = 1 for j = a, b, c, d, or where σ2

u = 2.

I also simulate five low variance cases where σ2
j = 1/16 for j = a, b, c, d, or where σ2

j = 1. I only

evaluate draws of [A,C] that are stable under learning by discarding and replacing any draws where

|AC| > 1.19

Tables 1-3 show the probability that structural coefficients expectations yield a lower discounted

loss than adaptive learning upon the revelation of an additional endogenous variable.

(Table 1 HERE)

(Table 2 HERE)

(Table 3 HERE)

For the baseline and majority of calibrations, structural coefficients expectations outperform adap-

tive learning. In these cases, even though adaptive learning does better at its fixed point than structural

coefficients expectations, the noise introduced by adaptive learning makes structural coefficients ex-

pectations preferable. In four cases, however; high σ2
d, high σ2

b , low σ2
a, and low σ2

u, adaptive learning

outperforms structural coefficients expectations. These are the four cases with the strongest correla-

tion between zt and gt. Adaptive learning exploits the correlation between the regressors and omitted

variables and therefore performs better in these cases.

18The results are similar if economic theory does not reveal an additional variable and agents use structural coefficients

expectations.
19Although draws where AC < −1 are stable under learning, I discard these draws to preserve the model’s symmetry.
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Tables 4-6 report the probability that a newly revealed endogenous variable is a red herring under

adaptive learning.

(Table 4 HERE)

(Table 5 HERE)

(Table 6 HERE)

The probability of a red herring under adaptive learning is typically less than one-half. Two

calibrations, however, high σ2
a and high σ2

c , exhibit particularly high probabilities of a red herring.

In both of these cases, the probability of a red herring exceeds one-half when agents initially know

most of the relevant variables. These two cases include heightened endogeneity, which strengthens

the effect of the Lucas Critique.

Tables 4-6 show that, in most cases, agents are better off using the newly revealed variable to

forecast if they are concerned with the median outcome. Table 7 considers the average outcome by

reporting the expected welfare loss from the revelation of the 15th endogenous variable under adaptive

learning.20

(Table 7 HERE)

Although the median loss is positive for only two calibrations, high σ2
a and high σ2

c , the average

loss is positive for four of the eleven calibrations. This result occurs because the Lucas Critique

produces a particular type of red herring which occurs infrequently but with a potentially catastrophic

welfare loss. Equation (17) shows that χ includes the term (1 − aCn)−1 and the model therefore

contains a singularity where aCn = 1. Thus as aCn → 1, zt, yet , yt, and likely `t explode. Formally, a

newly revealed variable is a catastrophic red herring if the ratio of the welfare loss after its revelation

to the welfare loss had theory not revealed that variable exceeds some arbitrarily large level.

An unbiased learning algorithm tends to keep the model away from its singularity, and catastrophic

red herrings occur with an exceptionally low, but positive, probability. If σ2
c 6= 0, however, then a new

20Table 7 multiplies the average loss by ten.
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revelation introduces bias and catastrophic red herrings occur more often. The coefficients obtained

by retroactively regressing y on zn+1 and gm after the revelation will, with increased probability, cause

aCn to be arbitrarily close to one.

Table 7 shows that catastrophic red herrings occur systematically when the subset of revealed

variables is large, and when the model includes high levels of endogeneity (high σ2
a or high σ2

c ) or

when the endogenous variables exhibit low levels of noise (low σ2
u). They can, however, occur with

lower frequency for any of the other calibrations. At least one such catastrophic red herring occurs in

the simulations where σ2
d is low, m = 11, and n = 14, causing the average loss to be positive for that

calibration.21

This intuition also applies to the revelation of the m+ 1th exogenous variable. Table 8 reports the

probability that a newly revealed exogenous variable is a red herring, and Table 9 reports the average

welfare loss.

(Table 8 HERE)

(Table 9 HERE)

The most striking difference between Table 8 and the results for the revelation of an endogenous

variable is that red herrings now typically occur with probability greater than one-half. Table 9 shows

that newly revealed exogenous variables may also be catastrophic red herrings. As before, catas-

trophic red herrings occur with particularly high frequency under the two calibrations that exhibit

increased endogeneity. In all eleven calibrations, the average welfare loss is positive.

To check robustness, I also simulate four additional cases: a high gain (γ = 0.15), a low gain

(γ = 0.01), a high discount factor (β = 0.999), and a low discount factor (β = 0.90).22 Table 10

reports the results for the revelation of an additional endogenous variable and Table 11 reports those

for the revelation of an additional exogenous variable.

21Using the mean welfare loss instead of the median welfare loss does not affect the comparison of adaptive learning

and structural coefficients expectations. The former continues to outperform the latter in all but the four calibrations

discussed earlier in this section.
22I increase the burn period to 2000 observations for the low gain case and increase the simulation length to 1000

periods for the high discount factor case.
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(Table 10 HERE)

(Table 11 HERE)

Throughout this paper, I have assumed constant gain learning. A higher gain is similar to using

a shorter sample period and usually causes both quicker convergence and more volatile beliefs after

convergence. High gains may be especially sensible when agents are relatively concerned about

structural change.23 For the revelation of an additional exogenous variable, alternate values of the gain

have little effect. A lower gain, however, significantly reduces the probability that a newly revealed

endogenous variable is a red herring. The value of the optimal gain, and the process by which agents

find it, is left for future research.

3 An Example: The New Keynesian Model

I now present an example that demonstrates how the general framework of this paper can easily be

extended to analyze popular macroeconomic DSGE models. The New Keynesian model has emerged

as the workhorse of monetary policy analysis. A simple version of the New Keynesian model consists

of an Euler/IS Equation, a New Keynesian Phillips Curve, and an interest rate rule.24

π̃t = βEt[π̃t+1] + κ(x̃t − zt) + Ωπχt (24)

x̃t = Et[x̃t+1] + τ(Et[π̃t+1]− R̃t) + gt + Ωxχt (25)

23See Evans and Honkapohja (2001) for more details of how the gain affects learning dynamics. Because the gain may

effect welfare in other ways, finding the optimal gain is not the same as finding the gain that minimizes losses from red

herrings.
24A few papers show that optimal policy in simple New Keynesian models depends on if agents form expectations using

bounded rationality. Orphanides and Williams (2008) show that, under learning, optimal policy requires that interest rates

respond strongly to inflation in order to stabilize inflationary expectations. Christev and Slobodyan (2014) consider

constant gain learning and show that optimality requires a strong policy response to inflation that results in both a fast

convergence speed and less volatile expectations. Salle, Yildizoğlu, and Sénégas (2013) find that in an agent based New

Keynesian model with social learning, optimality requires a credible and explicit inflation target.
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R̃t = λEt[π̃t+1] (26)

where x̃t, π̃t, and R̃t represent the percentage deviation from the steady states of output, inflation, and

the nominal interest rate respectively. The error term gt is often interpreted as a white noise preference

shock. The error term zt is often interpreted as a positively serially correlated measure of potential

output. Equation (26) assumes that the monetary authority can perfectly control the nominal interest

rate and only targets inflation.

I have added a Kx1 vector of unrevealed variables, χt, to the model. These variables may be

interpreted as those that influence micro-level agents’ decisions, but that are not included in the model.

I assume that agents are constrained by the theoretical model when attempting to forecast aggregate

inflation and output.25 To evaluate the model under learning, I assume that all agents initially use the

following specification:

π̃t = α0,tπ̃t−1 + α1,tx̃t−1 + α2,tzt + α3,tgt + επ,t (27)

x̃t = α5,tπ̃t−1 + α6,tx̃t−1 + α7,tzt + α8,tgt + εx,t (28)

where the regression coefficients are obtained through constant-gain learning.26 The omission of

intercept terms implies that agents know the model’s steady state. I assume that agents know the

autoregressive coefficients for all stochastic shocks. By re-dating Equations (27) and (28) and taking

expectations of gt and zt, the model may be restated as:

 π̃t

x̃t

 = J−1

 βρzα2,t − κ βρgα3,t

ρz(α7,t + τ(1− λ)α2,t) 1 + ρg(α8,t + τ(1− λ)α3,t)


 zt

gt

 + J−1

 Ωπ

Ωx

χt
(29)

25Although in most versions of this model, the representative household’s consumption depends on the expected aggre-

gate price levels and its own micro-level consumption (which, in equilibrium, equals aggregate consumption). It would

thus be reasonable to allow Et[x̃t+1] to depend on χt. To keep the example as simple as possible, however, I assume that

all expectations are formed without observing χt.
26I also consider this example where agents rely on the lagged values of stochastic shocks instead of their contempora-

neous values. The results are similar.
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J =

 1− βα0,t −κ− βα1,t

−α5,t − τ(1− λ)α0,t 1− α6,t − τ(1− λ)α1,t

 (30)

To simulate the model, I set β = 0.99 and λ = 1.5, both common calibrations in the related litera-

ture. There exists considerable disagreement over the proper values of τ and κ. Lubik and Schorfheide

(2004) estimate a similar version of the New Keynesian model and obtain posterior gamma distribu-

tions with means of 0.58 and 1.86 for κ and τ−1 using U.S. data beginning in 1982, after the Volker

disinflation .27 I draw from these distributions for each simulation of the model. Following the related

literature, I set the AR(1) coefficient for potential output (ρz) to 0.95 and that for preference shocks

(ρg) to zero. I assume that each element of χt follows an AR(1) process with each AR(1) coefficient

(ρχ,i) drawn from a uniform distribution between 0 and 1, and that innovations to all random error

terms have zeros means, standard deviations of 0.01 and are orthogonal to each other. Finally, each

element of Ω is drawn from a standard normal distribution. Each simulation begins with draws from

the distributions of the relevant parameters. I assume that the model begins at its steady state and I

initially set all learning coefficients equal to zero. After a burn period, I assume that economic the-

ory reveals the first element of χt and that agents are able to retroactively include this shock in their

econometric specifications.

π̃t = α0,tπ̃t−1 + α1,tx̃t−1 + α2,tzt + α3,tgt + α4,tχ1,t + επ,t (31)

x̃t = α5,tπ̃t−1 + α6,tx̃t−1 + α7,tzt + α8,tgt + α9,tχ1,t + εx,t (32)

Inflation and output now evolve according to: π̃t

x̃t

 =

J−1

 βρzα2,t − κ βρgα3,t βρχ,1α4,t + Ωπ
1

ρz(α7,t + τ(1− λ)α2,t) 1 + ρg(α8,t + τ(1− λ)α3,t) ρχ,1(α9,t + τ(1− λ)α4,t) + Ωx
1




zt

gt

χ1,t

 +

(33)
27Shea (2008), however, demonstrates that estimates of κ and τ vary widely based on the specific estimation technique

and exact specification of the model.
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J−1

 Ω̂π

Ω̂x

χ′

t (34)

where χ̂t is the lastK−1 rows of χt and Ω̂i is the lastK−1 columns of Ωi. I compare the performance

of the economy for the model where the new variable is revealed versus the model where it is not.

Monetary policy is usually evaluated in this framework by measuring the weighted sum of squared

deviations of inflation and the output gap. Because the Lucas Critique implies that forecasting is

likely to improve as time passes after the revelation of a new variable, it is necessary to discount

these deviations. Woodford (2003) derives the following loss function as a second-order quadratic

approximation of the representative household’s utility function:

V =
∞∑
j=0

βj[π̃2
t+j +

κ

θ
(x̃t+j − zt+j)2] (35)

I calibrate θ = 20 which implies a steady state markup of five percent.28 Both sources of red

herrings are present in this example. Clearly, if the determinate of J is sufficiently close to zero, then

both output and inflation are likely to explode and cause a catastrophic red herring. I set the gain equal

to 0.01 and simulate the model for 1000 draws for various values of K.29 The results are reported

below where ψ is the ratio of the discounted loss after the revelation to the loss had the revelation not

occurred.

(Table 12 HERE)

These results are similar to those for the general model. If agents know most of the model (i.e. K

is small) then the additional explanatory power of a newly revealed variable is unlikely to outweigh the

added noise that it introduces. Red herrings thus occur often. As agents know less of the model, the

benefits of adding another explanatory variable are greater and red herrings occur less often. As with

the general model, it is possible that red herrings yield a substantial welfare loss. The third column

28Woodford (2003) also shows that κ is a function of the model’s deeper structural parameters, including θ and β. By

fixing θ and β, I am therefore implicitly assuming that the uncertainty of κ is derived from other parameters, most likely

the uncertainty over the fraction of firms that may change their price in any period.
29Draws where the model is not stable under adaptive learning are discarded and replaced.
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reports the probability that the revelation results in a welfare loss at least three times greater than had

the revelation not occurred.30 Once again, large welfare losses are more likely when agents know most

of the model. It is also possible that the revelation of a new variable leads to a comparable welfare

improvement, although the fourth column demonstrates that these events occur far less frequently.

4 Conclusion

This paper examines agents’ forecasting problem in an environment where they know only a

subset of the relevant exogenous and endogenous variables. Under structural coefficients expectations,

agents use the structural coefficients associated with the revealed variables to forecast. Under adaptive

learning, agents either do not know, or discard their knowledge of these structural coefficients, and

instead regress the variable of interest on all revealed variables.

The paper presents two important results. First, if the exogenous and endogenous variables are

significantly correlated, then agents should choose to use adaptive learning, even if structural coeffi-

cients expectations are feasible. If this correlation is weak, however, then agents are better off using

structural coefficients expectations. Second, the revelation of a new variable often worsens forecast-

ing. Under structural coefficients expectations, red herrings often occur, but never with probability

greater than one-half. Under adaptive learning, however, the probability of a red herring is often

greater than one-half. Furthermore, if the model includes endogeneity, then a different type of red

herring will occasionally lead to a catastrophic loss in welfare.

In this paper, I assume that agents include all revealed variables in their econometric specification.

As is standard in the learning literature, agents do not conduct specifications tests, or make statistical

inferences as they learn. Allowing for more sophisticated agents in this framework could potentially

yield some interesting results. It would be of interest, for example, to allow agents to adjust the gain

in the learning algorithm based on the effects of past revelations. Additionally, the New Keynesian

model analyzed in Section 3 is far simpler than those used by most Central Banks when making

30As with the general case, if the model is sufficiently close to its singularity, then a catastrophic red herring can

produce an arbitrarily large welfare loss which significantly increases the average welfare loss across all simulations. I

refrain from reporting the expected welfare loss, however, because the explosive behavior of inflation and output pushes

the model beyond the region where its linearization is valid.
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forecasts. Extending the framework of this paper to more complex New Keynesian models is also

worthy of examination. These topics are left for future research.
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Figure 1: Effect of Discovering 
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Figure 2: Effect of Discovering the mth Exogenous Variable
(n = 15)
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Figure 3: Effect of Discovering 
the Fifteenth Endogenous Variable
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Table 1

Probability that Structural Coefficients Expectations Dominate Adaptive Learning (n = 15)

High Variances Low Variances

m BL σ2
a σ2

b σ2
c σ2

d σ2
u σ2

a σ2
b σ2

c σ2
d σ2

u

2 0.39 0.45 0.22 0.36 0.00 0.85 0.24 0.42 0.41 0.92 0.00

5 0.61 0.72 0.09 0.55 0.00 0.97 0.09 0.80 0.61 0.95 0.00

8 0.73 0.88 0.10 0.74 0.00 0.99 0.05 0.91 0.74 0.98 0.00

11 0.86 0.97 0.03 0.88 0.00 1.00 0.04 0.97 0.83 0.99 0.00

14 0.89 0.99 0.05 0.94 0.00 1.00 0.02 1.00 0.87 1.00 0.00

17 0.95 1.00 0.02 0.97 0.01 1.00 0.01 1.00 0.94 1.00 0.00

20 0.96 1.00 0.03 0.99 0.03 1.00 0.02 1.00 0.94 1.00 0.00

23 1.00 1.00 0.03 1.00 0.16 1.00 0.01 1.00 1.00 1.00 0.00

26 0.99 1.00 0.04 1.00 0.50 1.00 0.00 1.00 0.99 1.00 0.02

29 1.00 1.00 0.02 1.00 0.98 1.00 0.02 1.00 1.00 1.00 0.08

All 0.84 0.90 0.06 0.84 0.17 0.98 0.05 0.91 0.83 0.98 0.01
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Table 2

Probability that Structural Coefficients Expectations Dominate Adaptive Learning (m = 14)

High Variances Low Variances

n BL σ2
a σ2

b σ2
c σ2

d σ2
u σ2

a σ2
b σ2

c σ2
d σ2

u

3 0.90 1.00 0.02 0.90 0.02 1.00 0.02 0.99 0.88 0.98 0.00

6 0.89 1.00 0.02 0.88 0.01 1.00 0.01 1.00 0.90 1.00 0.00

9 0.90 1.00 0.01 0.94 0.00 1.00 0.02 0.99 0.89 1.00 0.00

12 0.91 1.00 0.04 0.93 0.01 1.00 0.03 0.99 0.90 0.99 0.00

15 0.89 0.99 0.05 0.94 0.00 1.00 0.02 1.00 0.87 1.00 0.00

18 0.88 1.00 0.05 0.95 0.00 1.00 0.03 0.99 0.87 1.00 0.00

21 0.90 0.99 0.07 0.96 0.00 1.00 0.05 0.98 0.89 1.00 0.00

24 0.89 0.99 0.11 0.94 0.00 1.00 0.09 0.97 0.91 1.00 0.00

27 0.93 0.99 0.24 0.96 0.00 1.00 0.19 0.96 0.91 1.00 0.03

30 0.95 0.98 0.58 0.96 0.00 1.00 0.62 0.95 0.91 1.00 0.13

All 0.90 0.99 0.12 0.94 0.00 1.00 0.11 0.98 0.89 1.00 0.02
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Table 3

Prob. that Structural Coefficients Expectations Dominate Adaptive Learning (m = n-1)

High Variances Low Variances

n BL σ2
a σ2

b σ2
c σ2

d σ2
u σ2

a σ2
b σ2

c σ2
d σ2

u

3 0.58 0.73 0.21 0.55 0.08 0.91 0.20 0.78 0.60 0.85 0.09

6 0.71 0.86 0.08 0.64 0.01 0.98 0.10 0.86 0.72 0.94 0.00

9 0.78 0.94 0.05 0.75 0.00 0.99 0.05 0.95 0.78 0.98 0.00

12 0.83 0.98 0.03 0.86 0.00 1.00 0.02 0.98 0.84 0.98 0.00

15 0.89 0.99 0.05 0.94 0.00 1.00 0.02 1.00 0.87 1.00 0.00

18 0.95 1.00 0.05 0.98 0.01 1.00 0.02 1.00 0.94 1.00 0.00

21 0.98 1.00 0.07 0.99 0.05 1.00 0.02 1.00 0.98 0.99 0.02

24 1.00 1.00 0.17 1.00 0.23 1.00 0.10 1.00 0.99 1.00 0.22

27 1.00 1.00 0.37 1.00 0.66 1.00 0.34 1.00 1.00 1.00 0.65

30 1.00 1.00 0.91 1.00 1.00 1.00 0.82 1.00 1.00 1.00 0.99

All 0.87 0.95 0.20 0.87 0.21 0.99 0.17 0.96 0.87 0.97 0.20

36



Table 4

Probability that the 15th Endogenous Variable is a Red Herring

High Variances Low Variances

m BL σ2
a σ2

b σ2
c σ2

d σ2
u σ2

a σ2
b σ2

c σ2
d σ2

u

2 0.38 0.42 0.29 0.39 0.20 0.46 0.28 0.38 0.37 0.49 0.18

5 0.40 0.48 0.27 0.39 0.21 0.43 0.29 0.42 0.37 0.45 0.20

8 0.37 0.48 0.29 0.40 0.20 0.43 0.31 0.34 0.40 0.47 0.24

11 0.37 0.46 0.30 0.47 0.23 0.41 0.27 0.44 0.38 0.48 0.19

14 0.44 0.47 0.32 0.50 0.27 0.44 0.28 0.43 0.38 0.45 0.22

17 0.38 0.49 0.30 0.53 0.25 0.46 0.28 0.37 0.39 0.46 0.29

20 0.38 0.49 0.34 0.50 0.30 0.44 0.31 0.37 0.36 0.48 0.40

23 0.39 0.52 0.33 0.49 0.35 0.46 0.26 0.45 0.38 0.50 0.46

26 0.43 0.50 0.39 0.51 0.36 0.45 0.35 0.37 0.42 0.48 0.52

29 0.40 0.48 0.40 0.51 0.39 0.44 0.35 0.44 0.40 0.49 0.55

All 0.40 0.48 0.32 0.47 0.28 0.44 0.30 0.40 0.38 0.47 0.33
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Table 5

Probability that the n+ 1th Endogenous Variable is a Red Herring (m = 14)

High Variances Low Variances

n BL σ2
a σ2

b σ2
c σ2

d σ2
u σ2

a σ2
b σ2

c σ2
d σ2

u

2 0.39 0.50 0.26 0.46 0.20 0.43 0.26 0.39 0.34 0.50 0.20

5 0.42 0.50 0.30 0.44 0.21 0.42 0.30 0.38 0.35 0.48 0.18

8 0.38 0.48 0.26 0.46 0.22 0.44 0.25 0.42 0.36 0.48 0.21

11 0.39 0.47 0.31 0.48 0.24 0.43 0.28 0.39 0.42 0.48 0.22

14 0.44 0.47 0.32 0.50 0.27 0.44 0.28 0.43 0.38 0.45 0.22

17 0.41 0.50 0.27 0.51 0.25 0.47 0.31 0.42 0.35 0.42 0.27

20 0.40 0.51 0.32 0.49 0.29 0.45 0.27 0.42 0.42 0.47 0.36

23 0.42 0.55 0.34 0.49 0.37 0.45 0.30 0.41 0.37 0.47 0.42

26 0.43 0.54 0.38 0.57 0.37 0.46 0.40 0.42 0.44 0.50 0.55

29 0.47 0.61 0.44 0.56 0.43 0.45 0.40 0.48 0.44 0.48 0.62

All 0.41 0.51 0.32 0.50 0.29 0.44 0.31 0.42 0.39 0.47 0.33
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Table 6

Probability that the n+ 1th Endogenous Variable is a Red Herring (m = n)

High Variances Low Variances

n BL σ2
a σ2

b σ2
c σ2

d σ2
u σ2

a σ2
b σ2

c σ2
d σ2

u

2 0.31 0.38 0.30 0.33 0.21 0.40 0.30 0.40 0.35 0.46 0.28

5 0.36 0.41 0.27 0.40 0.21 0.43 0.26 0.39 0.35 0.45 0.22

8 0.39 0.43 0.27 0.40 0.19 0.47 0.27 0.40 0.37 0.48 0.24

11 0.37 0.48 0.28 0.49 0.19 0.43 0.25 0.43 0.37 0.47 0.21

14 0.44 0.47 0.32 0.50 0.27 0.44 0.28 0.43 0.38 0.45 0.22

17 0.40 0.51 0.35 0.45 0.27 0.46 0.34 0.43 0.38 0.47 0.38

20 0.46 0.52 0.37 0.51 0.36 0.48 0.34 0.44 0.43 0.48 0.55

23 0.42 0.52 0.42 0.54 0.42 0.48 0.34 0.44 0.41 0.51 0.62

26 0.45 0.59 0.46 0.51 0.46 0.50 0.38 0.46 0.47 0.51 0.63

29 0.47 0.60 0.56 0.57 0.42 0.52 0.43 0.53 0.42 0.56 0.59

All 0.41 0.49 0.36 0.47 0.30 0.46 0.32 0.43 0.39 0.48 0.39
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Table 7

Expected Welfare Loss When the n+ 1th Endogenous Variable is Revealed (m = 14)

Relative to Structural Coefficients Expectations

High Variances Low Variances

n BL σ2
a σ2

b σ2
c σ2

d σ2
u σ2

a σ2
b σ2

c σ2
d σ2

u

2 -6.6 -6.6 -52.0 -4.3 -59.5 -8.9 -3.1 -5.2 -7.6 -5.4 -9.6

5 -5.1 9.7 -37.8 -1.4 -54.3 -7.5 -2.8 -4.3 -6.7 -35.0 -9.5

8 -4.6 10.2 -42.7 7.1 -46.6 -4.5 -2.7 -3.5 -5.5 -0.3 -7.7

11 -4.4 -32.4 -31.7 0.3 -41.5 -6.9 -2.2 -3.3 -4.5 504.3 -6.5

14 -4.7 17.0 -25.8 -2.1 -24.9 -6.6 -1.5 -2.6 -4.8 -0.3 -6.0

17 -3.5 94.7 -131.8 2.9 -16.9 -2.2 -1.5 -3.7 -4.5 -1.2 -3.0

20 -2.3 -70.0 -18.6 6.8 -10.1 -27.9 -1.1 -2.3 -3.1 -3.9 -0.9

23 -2.9 1409.3 -13.3 20.1 -4.7 -3.8 -0.7 -1.6 -2.8 0.4 -0.1

26 -2.6 2076.8 -8.6 52.5 -1.7 -1.9 -0.3 -1.7 -1.9 -3.3 89.9

29 -0.4 891.0 -1.0 91.9 -0.5 -3.3 -0.1 -0.4 -0.7 0.6 158.5

All -3.7 440.0 -36.3 17.4 -26.1 -7.3 -1.6 -2.9 -4.2 45.6 20.5
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Table 8

Probability that the m+ 1th Exogenous Variable is a Red Herring (n = 13)

High Variances Low Variances

m BL σ2
a σ2

b σ2
c σ2

d σ2
u σ2

a σ2
b σ2

c σ2
d σ2

u

1 0.65 0.54 0.73 0.67 0.76 0.60 0.74 0.53 0.64 0.72 0.74

4 0.51 0.36 0.80 0.56 0.84 0.48 0.82 0.32 0.55 0.84 0.81

7 0.45 0.27 0.88 0.56 0.88 0.50 0.87 0.22 0.45 0.88 0.88

10 0.49 0.32 0.92 0.51 0.95 0.57 0.92 0.23 0.50 0.93 0.91

13 0.47 0.37 0.95 0.57 0.97 0.66 0.95 0.24 0.46 0.96 0.95

16 0.58 0.54 0.94 0.65 0.99 0.72 0.96 0.33 0.53 0.96 0.99

19 0.64 0.61 0.98 0.76 0.99 0.76 0.98 0.41 0.59 0.97 1.00

22 0.66 0.79 0.99 0.84 1.00 0.80 0.98 0.48 0.62 0.99 1.00

25 0.74 0.86 1.00 0.92 1.00 0.85 0.99 0.61 0.73 0.99 1.00

28 0.84 0.93 1.00 0.96 1.00 0.88 0.99 0.70 0.80 0.99 1.00

All 0.60 0.56 0.92 0.70 0.94 0.68 0.92 0.41 0.59 0.92 0.93
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Table 9

Expected Welfare Loss When the m+ 1th Exogenous Variable is Revealed (n = 13)

Relative to Structural Coefficients Expectations

High Variances Low Variances

n BL σ2
a σ2

b σ2
c σ2

d σ2
u σ2

a σ2
b σ2

c σ2
d σ2

u

1 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.9 0.0

4 0.0 -0.1 0.1 0.0 0.1 0.0 0.0 0.0 0.0 0.1 0.0

7 0.0 -0.2 0.2 0.0 0.1 0.0 0.0 0.0 0.0 102.0 0.0

10 0.0 1.5 0.3 0.1 0.1 0.2 0.0 0.0 0.0 1662.0 0.0

13 0.0 2.4 0.4 0.1 0.1 0.2 0.0 0.0 0.0 0.8 0.0

16 0.0 8.3 0.5 0.8 0.2 0.3 0.0 0.0 0.0 0.8 0.0

19 0.0 29.6 0.6 1.5 0.2 0.5 0.0 0.0 0.0 12215.9 0.0

22 0.1 91.4 0.9 3.3 0.2 1.1 0.0 0.0 0.0 2.5 0.0

25 0.1 90.3 6.6 7.6 0.2 1.7 0.0 0.1 0.0 3.8 0.0

28 0.4 195.4 3.3 108.8 0.2 4.1 0.0 0.1 0.0 9504.7 0.0

All 0.1 41.9 1.3 12.2 0.1 0.8 0.0 0.0 0.0 2349.4 0.0
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Table 10

Probability that the 15th Endogenous Variable is a Red Herring

m BL high β low β high γ low γ

2 0.38 0.43 0.42 0.45 0.31

5 0.40 0.43 0.41 0.44 0.33

8 0.37 0.46 0.46 0.41 0.34

11 0.37 0.48 0.43 0.41 0.36

14 0.44 0.44 0.43 0.38 0.32

17 0.38 0.39 0.45 0.40 0.34

20 0.38 0.46 0.41 0.42 0.38

23 0.39 0.47 0.45 0.38 0.36

26 0.43 0.48 0.43 0.37 0.35

29 0.40 0.47 0.37 0.40 0.36

All 0.40 0.45 0.43 0.41 0.34
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Table 11

Probability that the m+ 1th Endogenous Variable is a Red Herring (n = 13)

m BL high β low β high γ low γ

1 0.65 0.80 0.45 0.77 0.46

4 0.51 0.59 0.43 0.74 0.42

7 0.45 0.51 0.43 0.77 0.36

10 0.49 0.44 0.41 0.86 0.30

13 0.47 0.49 0.40 0.93 0.25

16 0.58 0.56 0.47 0.96 0.20

19 0.64 0.65 0.50 0.97 0.21

22 0.66 0.75 0.49 0.99 0.16

25 0.74 0.88 0.56 0.99 0.17

28 0.84 0.93 0.56 0.99 0.12

All 0.60 0.66 0.47 0.90 0.26
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Table 12

Red Herrings in the New Keynesian Model
K p(RH) p(ψ > 3) p(ψ < 1

3
)

3 .850 .038 .000

6 .813 .016 .001

9 .778 .009 .000

12 .753 .015 .001

15 .738 .007 .000

18 .743 .012 .000

21 .718 .012 .000

24 .693 .013 .001

27 .705 .014 .001

30 .688 .018 .000

45


