Money in a Classical Model

These notes follow Gali Ch. 2. The model that we develop is a stepping stone toward our
New Keynesian model. It lacks two things that make the latter Keynesian; sticky prices and

monopolistic competition.

This model illustrates two important concepts. First, it includes a money market where

money provides utility to households. Second, it models a bond market.

The text includes cases with and without additively separate utility. We will focus on the

former:
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There are several aspects of this problem that merit discussion:

1. B; are riskless one-period bonds. Households purchase them in period ¢ at the price ); and
they pay 1 in period ¢t + 1. This bond market is important. Recall that our growth models
obtained an FEuler Equation through a capital market. For simplicity, this model neglects

capital. The Euler Equation instead comes from the bond market.

2. The representative household is one of an infinite and identical # of such households. It

thus takes all process as given.

3. Because all households are the same, and there is no government, B; = 0, in equilibrium. We
cannot, however, impose this condition until after optimization. The potential to buy bonds

out of equilibrium (even though one would never want to) is important.

4. Households obtain utility from their real money holdings. The motivation behind this
assumption is that money is a social convention that provides convenience. I choose to hold
money because I know that everyone else accepts it as part of transactions and it is easier than

barter.

The monetary economics literature diverges here. If we accept this logic, then we can

proceed with money in the utility function (or a related modeling device). Some monetary



economists, however, find this logic unappealing. They thus prefer to think more deeply about
why households hold money. We will take the former approach, which yields ample policy
implications. The latter is more conceptual and less informative about policy. The household’s

budget constraint is:
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Most of these variables are self explanatory. T}, however, represents lump sum transfers
that the household takes as given (they thus disappear during optimization). P is the price of

the consumption good.
We further assume the following instantaneous utility function:
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Optimization
We optimize via argument:

1. Suppose that the household increases consumption expenditures by one very small unit. It

Ue,t
P

is then able to buy P% units of the consumption good. This converts to units of utility in

period ¢t where u.; is the marginal utility of consumption.

2. All else, equal, the household must reduce its bond holdsings by é units.

1

0P units.

3. In period t 4+ 1 the household therefore expects to reduce its consumption by

. .1 - Buctt
4. The discounted utility loss from #3 is O

5. If such an experiment, or its opposite yields a utility gain, then the household cannot be

optimizing. It must thus be the case that optimality sets:
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Labor supply can be derived through a similar exercise:



1. Suppose that the household increases its labor supply by one very small unit. It thus obtains

W, which results in % additional units of consumption.
2. The household thus obtains W%tc’t units of utility.
3. The household also obtains the marginal disutility of labor, w,; which is negative.

4. It must be the case that these effects sum to zero:
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or, for our specific utility function from (4):
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Finally, we do a similar exercise to obtain money demand:

1. Suppose that the household increases its real money holdings by one very small unit in

period t. It thus increases its utility by w,, .

2. All eslse equal, the household reduces its consumption in period t by one unit, resulting in

a loss of utility equal to u.

3. All else equal, the household may increase its consumption by Et[ﬁ] in period ¢t 4+ 1. This

results in a discounted expected utility gain equal to ﬁEt[“Ht—fll]
4. Setting the sum of these terms equal to zero yields:
Ue,t4+1
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Using (5), we can re-write (8):
Umt — (1 - Qt)uc,t =0 (9)
Or
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where 4, = [nQ; ', the nominal interest rate. For our utility function:



Stoor(l—e)v (11)
Firm Optimization

The production side of the economy is easier. We assume: 1) perfect competition, and 2)

fixed capital so that K = 1 Vt. The latter is just for simplicity.

We assume the following production function:

Y, = AN} (12)

where A;, as always, is TFP. The representative firms problem is right out of ECO 101:
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Optimization sets the marginal product of labor equal to the real wage:

% — (1— a)A,N; ™ (14)

For the remainder of these notes, we will use lower case notation to indicate logs. Taking
logs of (14) yields:

wy —pp = In(1 — a) + a; — any (15)

Equilibrium

We have the following endogenous variables: Wy, P,,Y;, Cy, Ny, By, My, 11;, and i;. Our equa-
tions are (3), (5), (7), and (11)-(13). We are thus three equations short. One of them is the
observation that, in equilibrium, bond holdings equal zero: B; = 0. Another is the observation

that without capital, all output is consumed: Y; = C;.

The final equation, will be the monetary policy rule. For now, we ignore this. It turns out

that we can solve for output and employment independent of monetary policy.

First, take logs of (12):

Yo = a + (1 —a)ny (16)



Now take logs of (7):

Wy — Py = OY + Y1y (17)

We can then combine (15) and (17):

In(l —a)+ a — ang = oy + Yy (18)

Now use (16), the production function, to eliminate y; from (18):

In(l—a)+a —ang, =ocay + o(1 — a)ng + Yny (19)
or
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we can then insert (20) into (16):
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We have thus solved for output, consumption (because output equals consumption), and
labor. We now seek to solve for the real interest rate, the cost of borrowing controlling for
inflation. The relationship between the real and nominal interest rate is given by the Fisher

Equation:

Ty = it — Et[ﬂ-t—‘rl] (22)

Now take logs of (5), the Euler Equation:

ye = Eylyera] — 07 iy — Ex[mea] — p) (23)

where p = —In(f8). Note that (22) carries the expectations operator through. This implies
that we are assuming that E[XY]| = E[X] % E[Y]. Equation (22) is thus not literally an
Euler Equation but is instead a log-linear approximation. We will see several more linear

approximation of non-linear models going forward.

We can re-write (23) using the Fisher Equation, (22):

7y = 0B [Ayi1] + p (24)
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We now consider how agents form rational expectations. This entails assuming that agents

know that(21) describes how output evolves. If they know this then they will expect the

following:
1+
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and inserting (25) into (24) yields:
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Finally, it is direct from (17) that the real wage also depends only on TFP.

We have now shown that output, consumption, the real wage, employment, and the real
interest rate are independent of monetary policy. Monetary policy is thus said to be neutral.
This is a common feature of models in the classical tradition. It shows that we need to add
Keynesian features, especially nominal rigidities, for monetary policy to be able to stabilize real

variables.
Monetary Policy

We assume that the monetary authority has the ability to set the nominal interest rate ;.
This view is more in line with how actual monetary policy works than assuming that it chooses
M;. To close the model, we assume that the monetary authority uses a monetary policy rule
that links 7; to the models other variables. Of course, we do not believe that the Fed, for
example, literally uses such a rule. But we do think that a rule, appropriately chosen, can

approximate the Fed’s choices.

Suppose that the monetary authority uses the following rule:

w=p (27)

This rule simply sets the nominal interest rate as a constant. Presumably, the FOMC then

goes home and drinks Scotch.

The analysis that follows is challenging. Our goal is always the same, to represent the price
level (which is the only thing that monetary policy affects here) into a system of difference

equations (in this case a univariate difference equation).

First note that m = ln(Pil) = p; — pi—1. We can then re-write the Fisher Equation as:
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Eipial =pi+p—m (28)

This is something that we know how to deal with. It is a single difference equation with a
constant and an exogenous error term. 7; is exogenous because policy changes that affect the

price cannot effect the real interest rate.

For p > 0, the price level will grow without bound. But this is economically reasonable
because the price level is a nominal variable. To finish off the solution, we define ;11 =
Pir1 — Ei[pir1] as a sunspot. It is an expectational error that may be tied to any extraneous

variable. We then re-write the solution as:

Pit1 = Gp1 + D +p—1y (29)

This is considered an example of a failed policy. Because any random variable may be
interpreted as (, this solution allows the public’s extraneous expectations to be self-fulfilling.
Suppose, for example, that the sunspot depends on China’s budget deficit. We are then allowing
a variable that should not affect the model, to have real effects anyway. This is known as

indeterminacy. Avoiding it is a major goal of current monetary policy.

Now consider a more general, and more realistic, monetary policy rule:

Z.t =p + ¢7r7rt (30)

where ¢, > 0. This rule implies that the monetary authority is “leaning against the wind.”
When inflation is high, it seeks to reduce it by raising interest rates. Inserting (30) into the

Fisher Equation yields:

Eymp] = p4 dame — 1y (31)

or
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Because inflation is a real variable, we will only consider cases where 7; remains bounded.

(32)

To solve for inflation, we iterate forward: re-dating (32) yields:

E; [7Tt+2] i Tt1
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Notice that in re-dating (32) to obtain (33), we have not re-dated the time subscripts on
the expectational operators. This is due to the law of iterated expectations. This states that
my expectation of tomorrows expectation of X is just my current expectation of X. In other

words, I never expect to change my mind. Inserting (33) into (32):

T I Et[ftﬂ] + Et[WtJrQ]
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and if we keep iterating j of times, a pattern emerges:
' J
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k=0
We now consider two cases. First, suppose that the monetary authority chooses ¢, > 1. In

this case, as we evaluate (5) as j — oc:

o

Tt Z ¢;(k+1)Et [Pek] (36)

k=0

The key result here is that equilibrium is unique, a condition known as determinacy. In-
flation does not depend on sunspots. This is important because sunspots add volatility to the
price level which undermines the monetary authority’s goal of stabilization. This is known
a s the Taylor Condition. Although its exact form varies, it generally states that the mone-
tary authority must be sufficiently aggressive in cracking down on inflation to ensure a unique

equilibrium.

Now suppose that the monetary authority fails to satisfy the Taylor Condition. The solution
is then simply:

Tir1 = Ppimy — Ty + G (37)

Once again the solution depends on potentially de-stabilizing sunspots. Equation (37)
offers one (there are others) explanation for the volatility of the 1970s. There is some empirical
evidence that the Fed failed to satisfy the Taylor Condition. If so, then this may have allowed
for sunspots to destabilize prices (as seen in this model), as well as output (a result we will

have to wait until Chapter 3 to see).
Optimal Monetary Policy

Having solved for the Taylor Condition, we conclude by solving for the best monetary policy



rule. Recall the households money demand equation:
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Now consider how a social planner, who does not care about prices, would choose their
money demand. We are assuming that money is costless to produce. So to set the marginal

cost equal to the marginal benefit, we set:

Um,t - 0 (39)

Optimal monetary policy equates (38) with (39). This requires that i; = p.

Implementing such an outcome is non-trivial. Suppose, for example, that the monetary
authority tries to use (27). This yields m; = —p, which suggests that a slight deflation is

optimal (assuming that rho is just above zero). This is known as Friedman’s Rule.

The problem is that while the optimal allocation is an equilibrium, it is just one of many.

We saw this when we showed that this rule gives us indeterminacy.
Finding a rule that gives the optimal allocation as a unique equilibrium requires cleverness.
it = ¢(Tt—1 + 7Tt) (40)
where ¢ > 1.

We next re-date (40) and take expectations:

Eiliv1] = ¢(re + Eyfmeia]) (41)
Inserting (41) into (40):
. Eie
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Iterating forward:
tS Ty

Evaluating as j — oo, we get ¢, = 0 as a unique equilibrium. Optimality in this setting

requires a slight deflation. We should not take this too seriously. The model does not have



credit market imperfections that suggest avoiding deflation is a very important policy objective.

It is the first of many results, however, that suggest that near price stability is desirable.

The public worries more about unemployment than inflation. To some, there is a disconnect
between this desire and the Fed’s apparent focus on price stability. In general, as one studies
more monetary economics, we find more and more results which suggest that price stability is

the best way to achieve output/unemployment stability.

10



