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1 Model

The model is embedded in a simple neoclassical growth framework. Households solve a

mostly standard optimization problem:

MaxCt

∞∑
i=0

βln(Ct+i) (1)

s.t.

Kt+1 = (1 − δ)Kt +N1−α
t Kα

t − Ct (2)

Optimization then yields a standard Euler Equation.

1

Ct
=
β(1 − δ + αN1−α

t Kα−1
t )

Ct+1

(3)

We now add our first novel assumption; the discount factor, β is simply the probability of

being alive in the next period which is just one less the mortality rate.1 Furthermore, the rate

is itself a decreasing function of wealth, which consists exclusively of capital.

βt = 1 − l(kt) (4)

There is substantial evidence showing that better economic conditions lead to reduced mor-

tality, although the evidence does not strongly suggest whether the link depends primarily on

capital, income, or consumption. Chetty, Stepner, and Abraham (2016) show a that a strong

link between higher economic status and life expectancy exists in the contemporary United

States. This assumption is also common in the literature on Malthusian economics. Stein-

mann, Prskawetz, and Feichtinger (1998), for example, develop a model where higher levels of

human capital both increase the birth rate and decrease the death rate. Empiricl evidence sup-

ports the basic Malthusian connection between economic performance and population growth in

pre-industrial economies. Clark and Hamilton (2006) fins that increased wealth led to improved

reproductive fitness in England between 1585-1638.

As in the Malthusian literature, we allow population growth to depend on economic status,

in this case consumption.2

1We also considered a version of the model where the discount factor included intrinsic impatience as well as
the probability of death. This version produced no noteworthy differences and the present model thus excludes
intrinsic impatience.

2It makes little difference if population growth instead depends on capital or income.
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Lt+1 = (
ct
c∗

)γLt (5)

where c∗ is the subsistence level of per-capita consumption. It is then straightforward to convert

the model to a per-capita basis.

kt+1(
ct
c∗

)γ = (1 − δ)kt + kαt − ct (6)

1

ct
=

(1 − l(kt))(
ct
c∗

)γ(1 − δ + αkα−1t )

ct+1

(7)

The model thus consists of one state variable, kt, and one control variable, ct. We now turn

our attention to analyzing the different types of solutions that the model may exhibit.

The nature of equilibrium depends primarily on the functional form of l(k), the mortality

rate. We first assume that it is bounded between 0 and 1:

Assumption 1: l(0) < 1, l
′
(k) ≤ 0, and there exists a minimum level of mortality, l̄ that is

attained at some level of k.

Assumption 1 ensures that mortality cannot equal one, preventing the extinction of the

species, that mortality is decreasing in wealth, and that there is some biological minimum on

mortality. Later, we show that Assumption ensures the existence of at least one generally stable

steady state.

The model has only a few variables to calibrate. We set α = 1
3
, the standard variable for

capital’s share of income. The depreciation rate is set at 10%, suggesting annual data. For

now, we set gamma = 0, which implies a constant population. This simplifies the analysis of

equilibrium. Later, we isolate how the Malthusian mechanism impacts the model. The only

thing that then determines the nature of equilibrium is the mortality rate.

Case II: Multiple Steady States

Without population growth, the model’s steady state(s) can be evaluated using a single

equation. Equation (7) becomes:

1

1 − l(k)
= 1 − δ + αkα−1t (8)

The left hand side of (8) is the inverse of the discount factor while the right hand side is

one plus the real interest rate. Assumption 1 ensures that, for low enough values of k, the right
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hand side is above the left hand side. Our assumption of a minimum mortality rate ensures

that there is at least one point where the right hand side crosses from above, which typically

results in a stable equilibrium. It is easy, however, to design a mortality function which yields

multiple equilibria. The following function yields two stable and one unstable steady state:

l(k) = max[0.02, .07 − .0024k2] (9)

Figure 1: Multiple, Stable Steady States, l(k) = max[0.02, .07 − .0024k2]

The local stability of each steady state is evaluated by linearizing the model:

Xt = AXt−1 + et (10)

Stability then depends on the eigenvalues of A. If one is outside the unit circle, then there

is one saddle condition to pin down the model’s only control variable, ct. If, however, there

are two such eigenvalue,s then no solution exists and the steady state is unstable. The model

could also have no such eigenvalues, in which case sunspot equilibria may exist . We do not

encounter any such cases, however, when analyzing the model.

Table 1 reports the characteristics of each steady state from Figure 1.

The high capital steady state corresponds to higher income, lower interest rates, but less

consumption than the low capital steady state. Despite lower consumption, however, the higher
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Table 1: Steady State Properties
Low Medium High

k 3.918 4.322 4.606
l(k) 0.33 0.25 0.02
Life Exp. 30 40 50
Stable Yes No Yes
c 0.9888 0.9806 0.9729
r 3.41% 2.56% 2.04%

life expectancy (50 versus 30 years) presumably implies that the high capital steady state is

preferable to the low capital steady state.

We now simulate a stochastic version of the model. We add a mortality shock to the model,

although similar results can be be obtained through either a preference shock or a productivity

shock:

1

ct
=

(1 − l(kt)µt)(
ct
c∗

)γ(1 − δ + αkα−1t )

ct+1

(11)

where

mut = muρt−1et (12)

where ln(et) is white noise. Numerical exercises show that the boundary between the two

stable steady states’ basins of attraction is close to the medium capital steady state. We thus

simulate the model by linearizing around both the low and high capital steady states. If the

capital stock is less than that of the medium capital steady state, then we use the former linear

approximation. If not, then we use the latter.

The key result is that the mortality shock can shift the model between steady states. A

pandemic that increases mortality can increase capital per worker and shift the model from the

low capital steady state to the high capital steady state. Likewise
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