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Abstract

We introduce a new approach to modeling herd behavior. Households choose whether to

pay a cost in order to form a more reliable forecast. Under expectations herding, households

obtain disutility from deviating from the population’s average forecast, while under expecta-

tions anti-herding, they obtain utility from doing so. The model exhibits distinct states includ-

ing a state with high consumption volatility where all agents choose to form the more reliable

forecast, and a state with low consumption volatility where all agents choose the less reliable

forecast. As the desire to herd initially becomes stronger, the model spends more time in the

high volatility state If the desire to expectations herd is above a threshold level, however, then

the model abruptly starts to spend all its time in the low volatility state.
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1 Introduction

An extensive literature in both economics and finance examines herd behavior where heteroge-

neous agents distort their actions to match or deviate from (“anti-herding”) those of the population.

Behavioral economics has cited herd behavior as a critical driver of speculative bubbles, such as

the housing bubble that preceded the Great Recession.1 Herd behavior has been introduced into

theoretical settings mostly through information cascades.2 Here, agents infer information from the

actions of others in a sequential game so that the population may converge to a common belief de-

spite individual agents’ their own private information. Another approach is to assume that agents

have a reputational incentive to ignore their private information and mimic the actions of agents

who have acted before them.3

This paper presents and examines a new method of modeling herd behavior which we call

expectations herding. Households choose between forming a simple expectation with a large mean

squared forecast error, or enduring a disutility in order to form a better forecast with a smaller mean

squared forecast error. Households differ in the size of this disutility, allowing for heterogeneous

expectations. Expectations herding assumes that households also obtain disutiliy from having their

expectation differ from the average expectation across all households. Likewise, expectations anti-

herding assumes that agents obtain utility from standing out from the crowd.

We introduce this expectations herding into a simple, two-period overlapping generations

model. We find that if agents know the correct distribution of forecast errors, then expectations

herding often induces multiple equilibria. One such equilibrium may be an interior solution where

both types of expectations coexist and all agents obtain some disutility from departing from the

average expectation. One or two corner solutions may also exist where all agents coordinate so

that they all form one type of expectation. We thus assume that agents use adaptive learning to

learn about forecast errors. In addition to being more plausible than assuming that agents know the

distribution of forecast errors, learning acts as a selection criteria among multiple equilibria.

Under learning, when anti-herding is strong enough, the model is always at an interior equi-

librium where some agents form each type of expectation. Once ant-herding is made sufficiently

weak, however, the model starts to spend some time at a corner solution where all agents form the

more reliable forecast and the model’s behavior is identical to rational expectations. This state ex-

hibits maximum consumption volatility and consumption is perfectly correlated with output. We

show that as anti-herding continues to weaken, and then herding starts to strengthen, the model

1See Akerlof and Shiller (2009), and Shiller (2000).
2See Bikhchandani et. al. (1992) and Fajgelbaum et. al. (2017) for two prominent examples.
3See Scharfstein and Stein (2000).
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spends more time in this state. Surprisingly, we never observe both corner solutions in the same

simulation and for low enough values of herding, we never observe the state where all agents form

the less reliable forecast.

As the desire to herd becomes stronger, it passes a threshold level where the model suddenly

displays very different behavior. Above this value, we almost never observe the high volatility

state. Instead, the model converges to the state where all agents form less reliable forecasts and the

model rarely leave this state. Here, the model’s consumption volatility is minimized.

The paper is organized as follows. After a brief review of the empirical evidence on expec-

tations herding, Section 2 presents the overlapping generations model and expectations formation

process. Section 3 reports simulation results. Section 4 concludes.

1.1 Empirical Evidence on Herding and Anti-Herding

Testing for herding behavior among forecasters is common in the finance literature. Trueman

(1994), and Werner et al. (1999) find that analysts tend to bias their earnings’ forecasts towards

those previously released by other analysts. Galariotis et. al. (2015), and Clements et. al. (2017)

find evidence of herd behavior in stock price forecasting in both the United States and United

Kingdom. Pierdzioch and Rülke (2012), however, find the opposite result, where forecasters anti-

herd in an effort to stand out from the crowd.

Several papers suggest that anti-herding may be more common among macroeconomic fore-

casters. Lamont (2002) finds evidence that as macroeconomic forecasters become older and more

established, they anti-herd by issuing more radical forecasts. Rülke et. al. (2016) also find

widespread evidence of anti-herding among business cycle forecasters. Pierdzioch et. al. (2010)

also find widespread anti-herding among professional oil price forecasters. An exception is Bewley

and Fiebig (2002), who document herding behavior among interest rate forecasters.

2 Model

We use a simple two-period overlapping generations model with exogenous output to illustrate

the expectations herding mechanism. Each period there exists both a continuum of young agents

on the unit interval, and a continuum of older agents. Agents receive an exogenous endowment

of income in each period, Yt. They choose how much to consume in period one. They may

costlessly save their output (we do not include a formal credit market) and freely borrow against

future income. Young household i faces the following problem:
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MaxCi
1,t,f

∗ ln(Ci
1t) + βEt[ln(Ci

2,t+1)]− jf ∗i− τ(Ei
t [Yt+1]− Et[Yt+1])

2 (2.1)

s.t:

Ci
1,t + Ci

2,t+1 = Yt + Yt+1 (2.2)

Yt = Y ρ
t−1et (2.3)

where ut = ln(et) is a white-noise, mean-zero, productivity shock. Young households’ choice of

consumption yields an unremarkable consumption Euler Equation:

1

C1,t

= Et

[
β

Yt + Yt+1 − C1,t

]
(2.4)

Log-linearizing (2.4) and (2.3) yields:

ci1,t = Ei
t

[
yt + yt+1

1 + β

]
(2.5)

yt = ρyy−1 + ut (2.6)

where lower-case indicates percentage-deviations from the steady state. If agents form rational

expectations, then Ei
t [yt+1] = ρyt for all i and:

c1,t =
1 + ρ

1 + β
yt (2.7)

Young households must also choose which forecast to form, f ∗ = 0, 1. Choosing f ∗ = 1 allows

households to form the correctly specified AR(1) forecast for yt+1. Doing so, however, requires that

the household suffer a heterogeneous disutility equal to ji where j > 0 is an exogenous parameter.

This disutility reflects the effort needed to determine and calculate the superior expectation. If

the young household instead chooses f ∗ = 0., then they instead form a naive expectation where

yet+1 = ȳ=0, output’s steady state value.

The parameter τ is novel to this paper and allows for expectational herding. The termEt[yt+1] =∫ 1

0
Ei
t [yt+1]di is the population’s average forecast. If τ > 0, households obtain disutility from devi-

ating from the average forecast and they have an incentive to herd. This captures situations where

the reputational cost of a forecaster standing out from the crowd and being wrong, is greater than

the benefit of standing out and being correct. If τ < 0, however, agents gain utility from standing
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out from the crowd.4

We begin by assuming that when choosing f ∗, agents know the distribution of both types of

forecast errors, as well as the distribution of how they will differ from the average expectation. It

is natural to question how agents could know these distributions without actually calculating the

AR(1) forecast? We soon address this issue by assuming that agents must learn about the reliability

and conformity of each type of forecast using only past data.

The forecast error for the AR(1) forecast of yt+1 is simply ut, yielding a mean-squared forecast

error of σ2
u. The forecast error for the naive forecast is thus ρyy−1 + ut, yielding a mean-squared

forecast error of ρ2y2t +σ2
u. The expected utility gain from being better able to smooth consumption

by choosing the AR(1) forecast is well-approximated by:

κ(yt) = ln(C̄1,t)−
1

2
ln

(
C̄1,t +

ρ2y2t
1 + β

)
− 1

2
ln

(
C̄1,t −

ρ2y2t
1 + β

)
(2.8)

A young household then chooses to form the AR(1) expectation if and only if:

ij + τ((i− 1)ρyt)
2 ≤ κ(yt) + τ(iρyt)

2 (2.9)

When simulating the model in Section 3 (without learning), we solve for the equilibrium share

of households using the AR(1) forecast using:

î =


κ(yt)−τρ2y2t
j−2τρ2y2t

if
κ(yt)−τρ2y2t
j−2τρ2y2t

∈ [0, 1]

1 if
κ(yt)−τρ2y2t
j−2τρ2y2t

> 1

0 if
κ(yt)−τρ2y2t
j−2τρ2y2t

< 0

 (2.10)

An interior equilibrium does not always exist. Likewise, if τ > 0, then the model is prone

to multiple equilibria with corner solutions where ı = 0 or i = 1. Intuitively, if households care

about having their expectations conform to the average expectation, then it might be possible for

all agents to either choose the naive expectation or the AR(1) expectation. In fact, as τ → ∞,

three equilibria always coexist where i = 0, 1
2
, 1. The equilibrium where i = 1

2
here represents a

coordination failure where agents would be better off coordinating on either corner solution. When

we simulate learning in Section 3, we show that the interior equilibrium is generally unstable and

the model instead usually settles near one of the corner solutions.

The i = 0 corner equilibrium exists if:

4One example is Zillow’s “Crystal Ball” Award given to the forecaster who is the most accurate at predicting housing
prices. If a forecaster wants to win this award, they may have an incentive to distinguish their forecast from the
competition, even if doing so increases their mean squared forecast error.
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τ(ρyt)
2 > κ(yt) (2.11)

The i = 1 corner equilibrium exists if:

j − τ(ρyt )
2 < κ(yt) (2.12)

2.1 Learning

We now introduce learning into the model. Learning serves two purposes. First, it acts as a

selection criteria when multiple equilibria exist. Second, it is a plausible behavioral assumption

for how households might choose among the two types of forecasts without actually knowing the

AR(1) forecast.

We assume that all households are able to observe the history of how each forecast has deviated

from the true value of yt, and the mean forecast, E[yt+1], even if they might not understand how the

AR(1) forecast is formed. They then update their estimate of the difference in expected forecast

errors (at) using:

at = (1− γ)at−1 + γ
[
y2t−1 − (ρyt−2 − yt−1)

2
]

(2.13)

where ρyt−2 is the AR(1) forecast from period t− 2 for output in period t− 1. The naive forecast

always equals zero by construction. The parameter γ is the gain and represents how fast agents

learn. By making the gain a constant, the learning dynamics are persistent. The most common

rational for constant-gain learning is that agents worry about structural changes to the economy as

thus want to weigh recent observations more heavily.5 By chance, the naive forecast may temporar-

ily outperform the AR(1) forecast and, less often, agents might believe that the naive forecast is

better. This will push agents towards the naive expectation, but does not ensure that all households

choose it if τ 6= 0.

Households also learn how each forecast deviates from the population average forecast. The

learning parameter bt is the estimated squared deviation for the AR(1) forecast while ct is the

estimated squared deviation of the naive forecast. These are updated using:

bt = (1− γ)bt−1 + γ((̂i− 1)ρyt)
2 (2.14)

5Sargent (1999), and Evans and Honkapohja (2001) provide overviews.
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ct = (1− γ)ct−1 + γ(̂iρyt)
2 (2.15)

Young households then choose the AR(1) forecast if and only if:

ij + τbt ≤ at + τct (2.16)

The equilibrium share of households choosing the AR(1) forecast is then:

î =


at+τ(ct−bt)

j
if at+τ(ct−bt)

j
∈ [0, 1]

1 if at+τ(ct−bt)
j

> 1

0 if at+τ(ct−bt)
j

< 0

 (2.17)

Aggregate young consumption then equals:

c1,t =
1 + îρ

1 + β
yt (2.18)

Importantly, because households are simply using data to estimate how each forecast will de-

viate from the population average forecast, equilibrium under learning is unique.

3 Simulation Results

We simultaneously simulate five versions of the model. The first is rational expectations where

all households have complete information, equivalent to imposing î = 1. We consider two cases

without learning where (2.9) and (2.10) determine expectations: one without expectations herding

(τ = 0), and one with expectations herding (τ 6= 0). Finally, we consider two cases with learning

where (2.16) and (2.17) determine expectations: again one without expectations herding and one

with it. Our focus is one how expectations herding and learning affect the volatility of consumption,

its correlation with output, and the dispersion of expectations.

Our baseline calibration sets ρ = 0.95 and β = 0.95, common values in the literature. We set

σu, the standard deviation of productivity shocks, to 0.05. The steady state level of output is set to

one, alternative values have virtually no effects on our results. We set γ, the gain for the learning

versions of the model, to 0.02. This is similar to agents using rolling window window of about 50

periods. The parameters τ and j are novel to our paper. We fix them at 1 and 0.05 respectively and

then show the effects of alternate values.
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3.1 Alternate Herding/Anti-Herding Preferences

We first consider the effects of changing τ , the desire to herd, while holding j constant at 0.03.

Figure 1 shows the effects on the average value of ι̂. Note that the no herding cases and the rational

expectations case are independent of τ and the results are thus constant. Focusing on the the model

with learning, the results for the model with expectations anti-herding (τ ) seem surprising. In

each period, ant-herding pushes ι closer to one-half. Yet under anti-herding, the average value of ι

across periods is further from one-half.

Figure 1: Effects of Varying τ on Mean(ι̂)
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This result occurs because, without expectations herding, the model is prone to periods of high

volatility. When random productivity shocks drive the estimated benefit of the AR(1) forecast very

high, ι̂ = 1, and c1,t is as volatile under rational expectations. Ant-herding, however, reduces the

frequency of this high volatility state. This causes ι̂ = 1 to average a lower value under anti-herding

even though it is closer to one-half in every period. As shown in Figure 2, because it reduces the

frequency of this high volatility state, strong anti-herding reduces consumption volatility.
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Figure 2: Effects of Varying τ on StDev(c1,t)
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As τ rises above zero and expectations herding starts to occur, the high volatility state where all

households choose the AR(1)forecast occurs more often. The average value of ι̂ and c1,t’s volatility

are thus higher. For this set of simulations, once τ rises above 1.10, an abrupt change occurs. Now

expectations herding is so strong that full herding occurs and the model spends all of its time at

ι̂ = 0 where consumption volatility is minimized at a level equal to 1
1+β

of the rational expectations

level.

The model getting stuck at ι̂ = 0 instead of ι̂ = 1 made us worry that this could be a result of the

starting parameters we used to initialize the learning algorithm. We thus repeated the simulations

with starting parameters that endowed households with an implausibly strong preference for the

AR(1) forecast. But for τ ≥ 1.11, all agents nevertheless switched from the AR(1) to the naive

forecast within 200-400 periods.

Figure 3 reports the effect of varying τ on the correlation between young households’ con-

sumption and output. Prior to the point where ι̂ becomes trapped near near zero, both learning

versions reduce this correlation below 1. Once ι̂ becomes stuck near zero, however, c1,t ≈ yt and

the correlation is again very lose to 1.
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Figure 3: Effects of Varying τ on Cor(yt, c1,t)
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3.2 Volatility Cycles

For values of τ greater than 1.10, our use of adaptive learning causes the model to exhibit

two distinct states. The high volatility state occurs when productivity shocks cause the estimated

difference in mean-squared errors to be large enough so that all agents choose to form AR(1)

expectations. Here, the model is identical to rational expectations. c1,t is perfectly correlated with

output, and its volatility is maximized.

The moderate volatility state occurs when the difference in estimated mean squared forecast

errors is smaller and some agents choose to form naive expectations. Here, c1,t’s volatility is lower.

The properties of these states are highly similar regardless of the value of τ . Table 2 shows the

volatilities for each variable in each state for a simulation where j = 0.03 and τ = 0.5.

Table 1: Standard Deviations Under Each State
yt c1,t(Rat. Ex) c1,t(Learning)

Moderate Volatility State 0.133 0.133 0.113
High Volatility State 0.197 0.197 0.197

Output and consumption under rational expectations are also more stable when the learning

model is in the moderate volatility state. This is because periods of output stability tend to lower

the benefit of choosing the AR(1) forecast and thus cause the low volatility state under learning.
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Note, however, that learning causes a further 15% drop in consumption volatility (from 0.133 to

0.113). Learning thus acts to further dampen random periods of lower volatility.

Herding and anti-herding affects the frequency of high volatility state. When anti-herding is

strong enough, τ < −0.9, we never observe the high volatility state. Increasing τ then causes the

high volatility state to occur more often until it occurs most frequently, 18% of the time, around

τ = 1.1. This is intuitive, if the model yields ι = 0.9 without herding, the desire to conform to the

population’s average expectation might induce the remaining 10% of agents to pay for the AR(1)

expectation if herding is strong enough.

Figure 4: Frequency Spent in Each State
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Surprisingly, an abrupt transition occurs once τ rises above 1.10. Once herding is strong

enough, we very rarely observe the high volatility state. Instead the model always quickly con-

verges to a third state, the low volatility state, where all agents form the naive expectation.6

Table 2: Standard Deviations in the Low Volatility State
yt c1,t(Rat. Ex) c1,t(Learning)

Low Volatility State 0.152 0.152 0.082

6The transition is exceptionally abrupt. At τ = 1.1052, a simulation of 10,000,000 periods never yields the low
volatility state. By τ = 1.1053, however, the model spends 96% of the time in the low volatility state.
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Convergence to the low volatility state always occurs even when we impose initial conditions

on the learning algorithm where agents strongly prefer the AR(1) forecast. This low volatility

steady state is never observed when τ < 1.11. Thus while herding initially increases volatility,

there exists a threshold level of herding that causes a dramatic and abrupt decline in volatility.

The threshold value of τ where the model transitions to the low volatility state occurs at the

point where even agents with ι ≈ 0 will start to choose the naive expectation if all other agents

do so as well. The desire to herd is strong enough that even periods of high volatility will not

induce them to switch and the model remains in this state for the rest of the simulation (5,000,000

periods).

3.3 Alternate Costs of Forming the AR(1) Expectation

We next the effects of varying j, the disutility from forming the AR(1) forecast. For each value

of j, we simulate all five versions of the model for 1, 000, 000 periods. The rational expectations

version of the model is equivalent to imposing ι = 1 so that (2.7) determines consumption, and it

is unaffected by changing j. Rational expectations thus exhibits a perfect correlation between c1,t
and yt, as well as the highest volatility of consumption of all versions. Figure 5 reports the average

share of households paying to form the AR(1) forecast.

Figure 5: Effects of Varying j on Mean(ι̂)
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Unsurprisingly, as j becomes large, more households in all four boundedly rational versions
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of the model choose the naive forecast, and as  → ∞ ι̂ → 0 and all four versions become

identical. It may seem surprising that, without learning, including herding (τ = 1) leads to a

higher average value of ι and one that is closer to one-half, suggesting more dispersed expectations.

This is driven, however, by our selection of the interior equilibrium from (2.10) instead of corner

solutions. Figure 5 shows that herding moves ι away from one-half. For low values of j, AR(1)

expectations are cheap, and ι > 1
2
. Herding then causes some households to shift to the AR(1)

expectation, increasing ι toward 1. For higher values of j, however, the AR(1) expectation is

expensive so ι < 1
2
. Herding now moves some households towards the naive expectation, pushing

ι down toward zero.

Figure 6 reports the standard deviation of c1,t. These results follow from the average value of

ι, higher values cause consumption to respond more to productivity shocks, increasing consump-

tion’s volatility. Focusing only on the learning versions, herding thus causes there to be increased

consumption volatility for low values of j, but reduced volatility for higher values of j.

Figure 6: Effects of Varying j on StDev(c1,t)
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Rational expectations not only yields the highest levels of volatility, but also yields a perfect

correlation between c1,t and yt. Figure 7 shows that all four boundedly rational versions reduce

this correlation.
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Figure 7: Effects of Varying j on Cor(yt, c1,t)
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4 Conclusion

An extensive empirical literature demonstrates both the presence of herding and ant-herding

in different settings. This paper has developed a new approach for modeling herd behavior by

assuming that boundedly rational households must choose whether or not to pay a cost in order to

allow them to form the best possible forecast. If the desire to herd is strong enough, then agents

will coordinate on the low information state where the model underreacts to shocks.

This paper has used a simple endowment economy to illustrate the potential impacts of herding

or anti-herding. Future research may extend this framework into other applications. One example

is a real business cycle model where agents choose their labor supply as well as consumption. As

in the OLG model, herding initially causes the high volatility state to occur more often. Above

a threshold level of herding, however the model again abruptly transitions to always being in a

low volatility state. Now, however, lower consumption volatility corresponds to higher investment

volatility which also leads to greater investment volatility. Furthermore, the low-consumption

volatility state (with mostly naive forecasts) also exhibits a much lower correlation between con-

sumption and output.
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