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Abstract

We add households with heterogeneous discount factors, and who are subject to credit
constraints to a research and development (R&D) based endogenous growth model. We
find that altering borrowers’ access to credit often has profound implications on the steady-
state growth rate. The direction and magnitude of this effect depends on our assumptions
about households’ preferences over labor supply. When labor supply is highly elastic and
households do not try to smooth their labor supply between labor that produces output and
R&D labor, the annual growth rate decreases from 11.6% to approximately zero as the
debt-to-capital ratio rises from 0 to 1.38. However, if households instead have a strong
preference for smoothing their labor supply between production and R&D, then growth
increases from 2.91% to 3.83% as the debt-to-capital ratio rises from 0 to 1.55. In both
cases, as labor supply becomes less elastic, these effects become weaker.
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1 Introduction

Over the past decade, a considerable literature has examined the impact of assuming that

households can only borrow up to a fraction of their asset holdings. The analysis of these credit

constraints has mostly focused on how they allow demand shocks to be amplified and prop-

agated through the financial accelerator effect.1 In this paper, we add credit constraints with

heterogeneous households (differentiated by discount factor) into a research and development

(R&D) based endogenous growth model similar to Jones (1995).2 Households must choose

how much labor to supply to the productive sector and how much labor to supply to R&D, the

latter of which determines the economy’s steady-state growth rate of total factor productivity

(TFP), output, and consumption. We show that varying the maximum household leverage ratio

often has enormous effects on the steady-state growth rate.

The relationship between access to credit and growth depends primarily on two parame-

ters.3 The first determines how much households wish to smooth their labor supply between

productive labor and R&D. The second is the Frisch elasticity of labor supply. Because the

appropriate value of both parameters is unclear, we reports several combinations.4 In one ex-

ample, we assume both that households have little desire to smooth their labor supply between

R&D and productive labor and that aggregate labor supply is highly elastic. Here, the creditors

(patient households) are wealthier than borrowers (impatient households). When households

do not have access to credit, the steady-state growth rate is 11.6% per year. After increasing

1See Kiyotaki and Moore (1997) and Iacoviello (2005).
2For a more complete discussion of models with growth driven by endogenous technological change, see Romer
(1990), Grossman and Helpman (1991a,b,c), and Aghion and Howitt (1992).

3We use the terms access to credit, debt-to-capital ratio, leverage ratio, and loan-to-value ratio interchangeably.
While they do represent slightly different measures in the data, in our model, they are synonymous.

4See Chetty et al. (2011) for further discussion of the controversy over the correct calibration of the Frisch elastic-
ity of labor supply. Highly elastic labor supply tends to allow macroeconomic theory models to better fit the data
while microeconometric studies tend to suggest less elasticity. The reader may reasonably conclude, however,
that the effect of access to credit on growth is implausibly high when labor supply is very elastic in our model
and that less elastic labor supply thus yields better fit for our model. Because our model introduces households’
desire to smooth their labor supply across types as a new parameter, we are unaware of any existing work that
attempts to calibrate its value.
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the amount impatient households are allowed to borrow to the point where their debt-to-capital

ratio equals 1, growth falls to 3.03%. By the time the leverage ratio reaches 1.4, growth is

almost zero. This result occurs because more debt increases the wealth of creditors. The credi-

tors respond by substituting toward leisure and away from labor supply, including R&D labor,

which causes a reduction in growth. When we allow labor supply to be less elastic, the effect

is smaller, but still meaningful for even very inelastic labor supply.

We also find cases where more debt increases growth. Assuming that households prefer

to smooth their labor between production and R&D and that labor supply is relatively elastic,

growth is now driven more by the R&D choices of borrowers. As the borrowers become more

indebted, they supply more of all types of labor, including R&D. The steady-state growth rate

rises from 2.91% without debt to 3.00% when the leverage ratio equals 1. Furthermore, the

steady-state growth rate increases to 3.83% when the leverage ratio equals 1.55. Again, the

magnitude of these effects diminishes as labor supply becomes less elastic.

In much of the credit constraints literature, the leverage ratio is treated as a constant deter-

mined exogenously and representing the ability of lenders to recover collateral from borrowers

in the case of default.5 We argue that it is important to examine how a variable leverage ratio

affects growth because there is ample evidence that the leverage ratio is neither constant nor

immune to policy. Figure 1 plots household debt as a percentage of physical capital for the

United States between 1980 and 2011:
5This interpretation dates from the seminal work of Kiyotaki and Moore (1997).
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Figure 1: U.S. Household Debt to Capital
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Figure 1 illustrates that access to credit has both been trending upward and has been volatile

around its trend. However, because these data are aggregate, they do not compare directly to

the leverage ratio in our model, which applies only to specific types of households (impatient).

Further decomposing the data by household net worth, Figure 2 below shows the leverage

ratio (total debt-to-assets) for households in the lowest two percentiles of net worth from 1989

to 2010:
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Figure 2: Leverage Ratio by Percentile of Net Worth
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Figure 2 provides additional evidence that the leverage ratio is variable. In addition, Figure

2 shows that, for the poorest households, the leverage ratio often exceeds 1. In our model,

borrowers are almost always poorer than creditors, and we identify cases where allowing bor-

rowers to go “underwater” (a debt-to-capital ratio greater than one) has important implications

for growth. When households have little desire to smooth their labor supply across productive

labor and R&D, allowing underwater borrower yields especially low growth rates, often near

zero. When households have a strong desire to smooth labor across types, however, allowing

underwater borrowing maximizes growth.

There is also ample anecdotal evidence of policymakers attempting to influence leverage

ratios. The existence of the mortgage giants Fannie Mae and Freddie Mac, government spon-

sored enterprises in the United States, may fairly be viewed as a policy attempt to facilitate

greater access to mortgage debt. Provisions in the Dodd-Frank Wall Street Reform and Con-

sumer Protection Act of 2010 attempt to induce lower leverage among American firms, and the
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Basel Accords may be viewed as an international effort to minimize debt-to-capital ratios in

the banking sector. We thus consider it important to understand how changing leverage ratios

affect growth.

Most of our analysis focuses on the model’s steady state. We also linearize the model and

analyze its dynamics around the steady state. We find that the model is always determinate in

that a unique stationary rational expectations equilibrium exists. Notably, the model’s response

to a temporary shock to the leverage ratio does not significantly depend on whether households

prefer to smooth their labor supply across types. In all cases, borrowers respond to more

credit by temporarily increasing their capital, consumption, and output, while lenders have the

opposite response. We do not find that temporary shocks have important long-term effects on

the level of total factor productivity (TFP).

This is the first paper to combine an endogenous growth model with a R&D sector and

a model that includes heterogeneous households and credit constraints. There is, however, a

small literature that incorporates collateral constraints, using the Kiyotaki and Moore (1997)

framework in growth models. Several papers use liquidity constraints in an endogenous growth

model where growth is determined by capital accumulation instead of technological advance-

ment through R&D. Jappelli and Pagano (1994) find that credit constraints increase the savings

rate of households, which leads to a higher growth rate. Amable et al. (2004) use a model in

which net worth determines borrowing capacity and examine the impact of a change in the

interest rate on growth. They conclude that when the interest rate increases, growth decreases

due to the negative impact on retained earnings and the negative leverage effect. Finally, Ben-

civenga and Smith (1993) consider a model in which all investment activities are externally

financed and find that an increase in capital production technology magnifies the negative ef-

fects of credit rationing and reduces growth. These papers, however, either do not examine the

effects of changes in leverage on growth, or do not find that the leverage ratio has a significant

impact on growth rates. In contrast, we find that the effects of altering the leverage ratio are
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often dramatic.

Our paper also contributes to the mostly empirical literature on growth and financial de-

velopment. There is considerable debate over whether growth causes financial development

or vice-versa. Levine (2005) provides an overview and argues that the bulk of the evidence

suggests that greater financial development does promote growth. Although it is not obvious

how to equate leverage to general financial development, our paper presents a novel channel

through which changes in the financial sector affect growth.

This paper is organized as follows. Section 2 outlines the theoretical model. Section 3

shows the steady state results and the impact of varying access to credit. Section 4 analyzes the

model’s dynamics around the steady state. Section 5 concludes.

2 The Model

Following the related literature on credit constraints, we assume that a set of patient house-

holds, with relatively high discount factors, lends to a set of impatient households. Also consis-

tent with the previous literature, we impose a collateral constraint on the impatient households

who borrow from the patient households. Our contribution is to include a R&D-based endoge-

nous growth sector similar to Jones (1995). Both types of households are infinitely lived and

exist on a continuum on the unit interval. Patient and impatient households produce, consume,

and supply labor to the R&D and the production sector. Technology used by the lenders and

borrowers is the same and evolves according to a recursive structure:

At+1 − At = µ(Lλa,t + L
′λ
a,t) (2.1)

whereAt represents technology in time t, and La,t and L′
a,t are labor supplied to the technology

sector by lenders and borrowers respectively. For each simulation, we select a value of µ that
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yields a growth rate of approximately 3% when the impatient households’ debt-to-capital ratios

equal one.

Patient households are savers and lend to the impatient households. They maximize ex-

pected lifetime utility, which is a function of consumption (ct), hours worked for R&D (La,t),

and hours worked for production (Ly,t):

Max
ct,La,t,Ly,t,kt+1

E0

∞∑
t=0

βt

(
lnct −

χ(Lεa,t + Lεy,t)
η
ε

η

)
where the expectation operator is E0, the discount factor is β (calibrated at a value of 0.99),

χ is the weight placed on the disutility associated with supplying labor, ε is a parameter that

dictates the substitutability between labor supplied to R&D and production, and η is the inverse

Frisch elasticity of labor supply. They are subject to a budget constraint:

ct + kt+1 + bt ≤ Rt−1bt−1 + Yt + (1− δ)kt

where ct is patient household consumption, kt is patient household capital stock, δ is the depre-

ciation rate, and Yt is patient household output. The borrower and lender relationship between

the two households is defined by their relative discount factors. The discount factor of the im-

patient households is less than that of patient households. As a result, the impatient households

are the borrowers and patient households are the lenders in the model. The loan structure is

such that in time t, a loan of amount bt is made from the patient households to the impatient

households. In the subsequent period, the impatient households pay off the debt at an interest

rate of rt, where Rt = 1+ rt. Therefore, in time t, the value of the loan plus interest from time

t− 1, Rt−1bt−1, is an additional source of income for the patient households.

In addition, patient households produce according to the following constant returns to scale

(in labor and capital, given technology) production function:
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Yt = (AtZtLy,t)
αk

(1−α)
t

There are two components of TFP: a permanent component (At) and a transitory component

(Zt) that is subject to random productivity shocks.

The first order conditions for the patient households are:

Et

[
1 + gt+1

c̃tUt

]
=

[
β

c̃t+1Ut+1

(1− δ + Zt+1(1− α)Lαy,t+1k̃
−α
t+1)

]
(2.2)

Et

[
1 + gt+1

˜ctUt

]
= Et

[
βRt

c̃t+1Ut+1

]
(2.3)

αZtL
α−1
y,t k̃t

1−α

c̃tUt
= χ(Lεa,t + Lεy,t)

η
ε
−1Lε−1y,t (2.4)

χ(Lεa,t + Lεy,t)
η
ε
−1Lε−1a,t = Et

[
βλµαZt+1L

λ−1
a,t L

α
y,t+1k̃

1−α
t+1

c̃t+1(1 + gt+1)Ut+1

(2.5)

+ βχLε−1a,t+1(L
ε
a,t+1 + Lεy,t+1)

η
ε
−1
(

La,t
La,t+1

)λ−1(
1 + gt+2

1 + gt+1

)]

where equation 2.2 is patient household demand for capital, equation 2.3 is the Euler equa-

tion, equation 2.4 is patient household labor supply to the production sector, and equation 2.5

is patient household labor supply to the R&D industry. Consumption and capital have been

detrended such that c̃t = ct
At

, k̃t = kt
At

, and b̃t = bt
At

.

To see the intuition behind equation 2.5, the supply of R&D labor, consider a case where

La,t changes by one unit such that dLa,t = 1. Solving for dLa,t+1 yields:
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dLa,t+1 = −
(

La,t
La,t+1

)λ−1(
1 + gt+2

1 + gt+1

)
(2.6)

where

gt+1 =
At+1 − At

At
= µ(Lλa,t + L

′λ
a,t) (2.7)

In order for At+2 to remain unchanged, if labor is increased by one unit in time t, labor in time

t + 1 changes by dLa,t+1. Equation 2.5 equates the benefits and costs of changing La,t and

La,t+1 by these amounts.

Impatient households, denoted by the prime symbol, work, consume, produce, and borrow

from the patient households. They maximize expected lifetime utility:

Max
c
′
t,L

′
a,t,L

′
y,t,k

′
t+1

E0

∞∑
t=0

β
′t

(
lnc

′

t −
χ(L

′ε
a,t + L

′ε
y,t)

η
ε

η

)
subject to a budget constraint:

c
′

t + k
′

t+1 +Rt−1bt−1 = bt + Y
′

t + (1− δ)k′

t

and a credit constraint:

Rtbt ≤ mtk
′

t+1

where mt evolves according to an AR(1) process such that:

mt = mρm
t−1em,t (2.8)

and em,t is a random shock. The detrended credit constraint is given by:
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b̃t ≤
(1 + gt)mtk̃

′
t+1

Rt

(2.9)

The collateral constraint on impatient households requires that the value of their debt plus in-

terest cannot exceed the amount of recoverable future capital. In this setup, the threat of default

matters, but borrowers are not allowed to actually be insolvent.6 We interpret the variable mt

as representing access to credit. Consider the credit constraint evaluated at the steady state.

Provided that the impatient household discount rate is less than the patient household discount

rate (β ′
< β), at the steady state, the collateral constraint will be binding:

b̃ =
(1 + g)mk̃

′

R

At the steady state, R = (1+g)

β̃
and β is calibrated to be 0.99. Using an approximation where

β = 1, plugging in the value for R and rearranging yields:

m =
b̃

k̃′ (2.10)

which is the debt-to-capital ratio. The variable m can be interpreted as a leverage ratio. It

is analogous to capital requirements for firms or loan-to-value (LTV) ratios for households.

In the credit constraints literature, m is both treated as a constant and often interpreted to be

one minus the cost of recovering collateral in the event of default. This latter interpretation

constrains m to be less than one. As discussed in Section 1, however, the data show that m

is both volatile and, for subsets of households, possibly greater than one. Thus, we simply

interpret m as the exogenous level of access to credit and only constrain it to be non-negative.

Impatient households also produce using their own labor and capital:

6Marshall and Shea (2014) relax this assumption, allowing agents to explicitly default and show that this causes a
discrete drop in asset prices and output.
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Y
′

t = (AtZtL
′

y,t)
αk

′(1−α)
t

The first order conditions for the impatient households are:

Et

[
(1 + gt+1)

c̃
′
t

]
= Et

[
β

′
(1− δ + Zt+1(1− α)L

′α
y,t+1k̃

′−α
t+1 )

c̃
′
t+1

+mγ̃t(1 + gt+1)

]
(2.11)

γ̃tRt + Et

[
β

′
Rt

c̃
′
t+1(1 + gt+1)Ut+1

]
=

1

c̃
′
tUt

(2.12)

αZtL
′(α−1)
y,t k̃t

′(1−α)

c̃t
′
Ut

= χ(L
′ε
a,t + L

′ε
y,t)

η
ε
−1L

′(ε−1)
y,t (2.13)

χ(L
′ε
a,t + L

′ε
y,t)

η
ε
−1L

′(ε−1)
a,t = Et

[
β

′
λµαZt+1L

′(λ−1)
a,t L

′α
y,t+1k̃

′(1−α)
t+1

c̃
′
t+1(1 + gt+1)Ut+1

(2.14)

+ β
′
χL

′(ε−1)
a,t+1 (L

′ε
a,t+1 + L

′ε
y,t+1)

η
ε
−1

(
L

′
a,t

L
′
a,t+1

)λ−1(
1 + gt+2

1 + gt+1

)]

where equation 2.11 is impatient household demand for capital, equation 2.12 is the Euler

equation, equation 2.13 is impatient household labor supply to the production sector, and equa-

tion 2.14 is impatient household labor supply to the R&D industry. The Lagrange multiplier

on the credit constraint is detrended by γ̃t = γtAt.

Other equations in the system include:

Ỹt = Lαt k̃
1−α
t (2.15)
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Ỹ
′

t = L
′α
t k̃

′(1−α)
t (2.16)

c̃t + k̃t+1(1 + gt+1) + b̃t ≤
Rt−1b̃t−1
(1 + gt)

+ Ỹt + (1− δ)k̃t (2.17)

c̃
′

t + k̃
′

t+1(1 + gt+1) +
Rt−1b̃t−1
(1 + gt)

≤ b̃t + Ỹt
′

+ (1− δ)k̃t
′

(2.18)

where equations 2.15 and 2.16 are the detrended production function for the patient and impa-

tient households respectively, and equations 2.17 and 2.18 are the detrended budget constraints

for the patient and impatient households respectively. Finally, we assume the transitory part

of TFP follows an AR(1) process according to equation 2.19 and that the shock to preferences

(Ut) is iid with mean equal to one.

Zt = Zρa
t−1eZ,t (2.19)

3 The Balanced Growth Path and Leverage

This section examines the model’s steady state and shows that the effects of varying the

leverage ratio on the growth rate may be in either direction, depending on the calibration,

and that they are potentially large. Two parameters are critical: ε and η. When ε is close to

one, suggesting that households have little desire to smooth their labor supply, higher leverage

reduces growth. High values of ε, which implies a desire to smooth labor supply, however,

cause higher leverage ratios to increase growth. The magnitude of the effects are large when η

is low (suggesting elastic labor supply) and smaller when it is high. Because ε is novel to our

paper and the correct calibration of η is controversial, we consider several alternate calibrations.
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We also consider the optimal leverage ratio, calibrated using a social welfare function eval-

uated at the steady state. These results are sensitive to both our calibration and our choice of

social welfare functions, specifically whether we use a Utilitarian function that generally tracks

the utility of patient households or a Rawlsian function that generally tracks the utility of im-

patient households. We find cases where optimality occurs at m = 0, suggesting that allowing

any debt is welfare reducing and cases where the optimal leverage ratio is greater than one,

which implies that households should be allowed to go underwater on their debt.

As far as possible, we follow the related literature in calibrating our model. We set α = 2/3,

a standard value for the Cobb-Douglas production function. We set β = 0.99, implying a real

interest rate of 4% for quarterly data. We set β ′
= 0.95, and, as in Jones (1995), we set λ = 1.7

We set δ = 0.025, another standard value. For each simulation, we fix µ so that the steady-state

growth rate for m = 1 is near 3%. We then examine the effects of changing m. Table 1 below

summarizes the baseline calibration.

Table 1: Calibration
α labor’s share in production function 0.67
β patient households’ discount factor 0.99
β

′ impatient households’ discount factor 0.95
χ weight on labor supply in utility function 1
λ returns to scale on R&D 1
δ capital depreciation rate 0.025
β

′ impatient households’ discount factor 0.95

3.1 Simulation 3.1: ε = 1.1, η = 1.1, µ = 0.01222

In this simulation, ε is low suggesting that households have little taste for smoothing their

labor supply across types. In addition, labor supply is highly elastic (η = 1.1). The key

implication of having a low ε is that impatient households, having a lower discount factor,

supply very little R&D. As a result, the R&D decisions of patient households almost entirely

7As β
′ → β debt approaches zero and the effects changing m also go to zero.
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drive growth.

For all of our simulations, we choose µ to yield about a 3% growth rate at m = 1. In

this simulation, growth equals 11.60% when m = 0. Here, there is no interaction between

the two types of households, except for an uncorrected positive externality where each of their

R&D benefits the other. As shown in Figure 3, the growth rate continues to fall as m increases,

reaching 3.03% at m = 1 and it is near zero by m = 1.38

Figure 3: Effects of Varying m on Growth and Utility
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The effect of a change in access to credit on growth in this simulation is dramatic. Growth

becomes virtually nonexistent when the impatient households are allowed to be highly lever-

aged. At the steady state, higher leverage transfers wealth from impatient households to patient

households. Impatient households respond by increasing their productive labor. But because

they supply almost no R&D, this has virtually no impact on growth. Figure 4 summarizes the

impact of a change in access to credit on impatient households.
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Figure 4: Effects of Varying m on Impatient Households
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As m increases, patient households become wealthier. They respond by substituting away

from both types of labor towards leisure. Because they drive growth, the reduction in their R&D

causes the aggregate growth rate to collapse. For very high leverage ratios, patient households

are content to live almost entirely on debt payments while supplying little labor and causing

very low growth. Figure 5 shows the effects of a change in m for the patient households. The

values for all variable are normalized so that they equal 100 when m = 0.
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Figure 5: Effects of Varying m on Patient Households
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We now evaluate the welfare implications of different values of m using the steady-state

levels of utility for each type of household. Iterating the utility functions forward at the steady

state and taking infinite geometric series yields:

U =
1

1− β

[
ln(c)− χ

(Lεa + Lεy)
η
ε

η
+
ln(g)

1− β

]
(3.1)

U
′
=

1

1− β

[
ln(c

′
)− χ

((L
′
a)
ε + (L

′
y)
ε)
η
ε

η
+
ln(g)

1− β

]
(3.2)

These utility levels are included in Figure 3. Steady-state utility is maximized for impatient

households at m = 0 because their wealth and growth are highest and for patient households

at m = 1.38 (the largest value of m in this calibration). A Utilitarian social welfare function

based on steady-state utilities is maximized at m = 1.38, while a Rawlsian is welfare function

is maximized at m = 0, because it perfectly tracks impatient utility.
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This simulation illustrates how higher leverage can cause a dramatic decline in growth.

Increasing access to credit causes both lower growth and much higher levels of income in-

equality.

3.2 Simulation 3.2: ε = 10, η = 1.1, µ = 0.0042

In this case, we continue to assume that labor supply is highly elastic. But now, we set

ε = 10 so that households try to smooth their labor supply between the two types. We also

lower µ in order to keep growth rates close to 3% at m = 1. Figure 6 shows the effects of

varying m on the growth rate and utility.

Figure 6: Effects of Varying m on Growth and Utility
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When m = 0, the annualized growth rate is 2.91%. As m rises to one, the growth rate exhibits

a small but important increase to 3.00%. As m increases to 1.55, however, the increase in the

growth rate accelerates, rising to 3.83%.

By assuming that households wish to smooth their labor across types, we now induce impa-
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tient households to supply significant levels of R&D. As m increases and wealth is transferred

from impatient households to patient households, the former now respond by increasing their

supply of both types of labor while the latter respond by decreasing both of their labor supplies.

In this simulation, the effect on impatient households is dominant and growth increases along

with m.

Figure 7 shows how impatient households change their steady-state levels of labor and

consumption for different values ofm, while Figure 8 shows the effects on patient households.8

Figure 7: Effects of Varying m on Impatient Households
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8For Figure 8, the values for all variables are normalized so that they equal 100 when m = 0.
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Figure 8: Effects of Varying m on Patient Households
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A striking result is how the effect on the growth rate accelerates when households are

allowed to be significantly underwater on their debt. To understand this result, consider the

model when m is below one. When impatient households are allowed to borrow more, they do

so (at the steady state), and their steady-state consumption falls accordingly. They respond to

this both by supplying more productive labor and acquiring more capital. With a LTV ratio of

less than one, any additional capital increases debt less than one-to-one and increased capital

thus has a positive effect on the impatient households’ wealth. This secondary effect dampens

the overall reduction in wealth and, as a result, all variables exhibit relatively small changes,

including the growth rate.

Now suppose that m is above 1. Once again, increased access to credit reduces the impa-

tient households’ wealth and increases the impatient households’ capital. Now, however, an

extra unit of capital results in a more than one-to-one increase in debt. Ifm is far enough above

1, the effect of extra debt payments will overcome that of the positive marginal product of cap-
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ital, so that more capital actually reduces the impatient households’ wealth. The initial effect

on wealth is now amplified instead of dampened so that all variables, including the growth rate,

exhibit much larger changes in response to varying m.

Impatient household individual welfare and a Rawlsian social welfare function are max-

imized when m = 0.88. Because growth is now increasing in m, impatient households no

longer are better off without any debt even though no debt eliminates the negative wealth

effect. Patient household welfare and a Utilitarian social welfare function are highest when

m = 1.55 (the largest value in this calibration).

3.3 Simulation 3.3: ε = 1.1, η = 3, µ = 0.0148

Our first two simulations assume that labor supply is highly elastic. We now consider a

variation of Simulation 3.1 where we continue to assume that ε = 1.1, but where labor supply

is now inelastic and calibrated at η = 3. Recall, a low ε implies that households do not have a

strong preference for smoothing their labor supply across types. Figure 9 reports the results:
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Figure 9: Effects of Varying m on Growth and Utility

-40

-20

0

20

40

60

80

100

120

140

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5
m

Growth Patient Utility Impatient Utility

The growth rate is 3.45% at m = 0 and is 3.00% at m = 1. Growth decreases to around 0.75%

as access to credit increases up to the point where m = 1.50.

The mechanisms for this simulation are qualitatively the same as for 3.1. Impatient house-

holds again supply almost no R&D. As patient households become wealthier, they substitute

away from R&D (and productive labor) towards leisure, and growth declines. But because

labor supply is less elastic, the changes in R&D and growth are less dramatic, but still large, as

compared to 3.1.

Figure 10 shows the effects on impatient households. As in Simulation 3.1, impatient

household labor supply to the R&D sector is basically zero.
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Figure 10: Effects of Varying m on Impatient Households
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As m increases, impatient households once again acquire more capital and supply more R&D

labor. However, the change in the growth rate is driven by patient households, as shown in

Figure 11:9

9Again, the values of the variables are normalized to equal 100 when m = 0.
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Figure 11: Effects of Varying m on Patient Households
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Patient households again supply less R&D and productive labor, but their consumption in-

creases due to the increase in wealth from debt payments. Now, the decline in patient house-

holds’ R&D causes the decline in growth seen in Figure 9.

Patient household utility is increasing throughout this range of m. Impatient household

utility peaks at m = 0.86. A Rawlsian social welfare function again tracks the impatient

household utility in this simulation. A Utilitarian social welfare function more closely tracks

the patient household utility. Once again, the optimal value of m depends on the social welfare

function specification but lies between 0.86 and 1.50.

3.4 Simulation 3.4: ε = 10, η = 3, µ = 0.0044

In the last simulation, labor supply is less elastic and households prefer to smooth their

labor between production and R&D, as in Simulation 3.2. The results here are similar to that

of Simulation 3.2, except that the effects are dampened due to the reduction in labor supply
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elasticity. Figure 12 shows the impact of a change in m on growth and utility:

Figure 12: Effects of Varying m on Growth and Utility
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Growth increases from 2.94% when m = 0 to 4.77% when m = 1.69. The growth is driven

by an increase in impatient household labor supply to the production sector, and as a result

of the preference for smoothing labor across types, R&D labor supply also increases. Patient

household utility is increasing as access to credit increases. Impatient household utility begins

to decline significantly once the LTV ratio exceeds one.

Impatient household utility and Rawlsian social welfare are maximized when m = 0.87.

The LTV ratio is much higher at m = 1.69 (the largest possible value) when maximizing

patient household utility. Utilitarian welfare is maximized when m = 1.61.
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4 Temporary Shocks

We use the well known method of Blanchard and Kahn (1980) to analyze the dynamics of

a linearized version of the model around its steady state. For all of the calibrations reported in

Section 3, the steady state is determinate, implying that a single stationary rational expectations

equilibrium exists in the neighborhood of the steady state. We now illustrate how the model

responds to one-time innovations to credit (mt), productivity (Zt), and preferences (Ut).10

We have shown that permanent changes to debt have very different effects at the steady

state depending on the calibrated value of ε. Notably, the model’s dynamics around the steady

state, including to temporary debt shocks, appear to be largely independent of ε. Below, we

report impulse response functions using the calibration from Simulation 3.1. The results for

Simulation 3.2 are very similar.

We set the AR(1) coefficient equal to 0.95 for the shocks to productivity and debt, while

assuming shocks to preferences are iid. We begin by reporting the response to an innovation

that increases m by 0.01. We report results for a low debt (m = 0.1) case and a high debt

(m = 0.9) case. The response of each variable is transformed into percentage deviations from

the steady state (indicated with a “hat”).

10In simulating the model, we continue to impose that that the credit constraint is binding. Although this is
necessarily true at the steady state, it may not be the case at all times. Iacoviello (2005) examines the effect of
making this assumption in a related model and finds that it is small.
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Figure 13: Response to Debt Shock
Solid: m = 0.9, Dashed: m = 0.1
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With increased access to credit, impatient households borrow more, resulting in additional

consumption. Additional access to credit also incentivizes capital accumulation, which results

in increased production from the impatient households. The effects are reversed for patient

households. With more of their income being lent to the impatient households, patient house-

holds reduce their consumption, capital, and production. Patient households also reduce their

supply of R&D, but this results in only a very small decline in the growth rate of trend produc-

tivity (≤ 0.00012).

The effects are much larger when the steady state debt level is high. This is consistent with

the results of Section 3, which show that the effects on all variables of changing m was larger

for m = 0.9 as opposed to m = 0.1. The initial increase in access to credit results in more

capital accumulation which, then allows for even more debt, amplifying the total increase in

credit. This effect, and thus the total increase in debt, is larger for the higher steady-state value

of m which causes all of the IRFs to have larger magnitudes at m = 0.9.
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We now consider a one time increase of 0.01 to Ut, suggesting reduced utility from con-

sumption.

Figure 14: Response to Preference Shock
Solid: m = 0.9, Dashed: m = 0.1
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As expected, both types of households initially reduce their consumption. Impatient house-

holds increase their capital stock and initially decrease their output. The effect on patient

households depends on m. If m is large, then the shock also causes a large increase in debt.

Patient households then substitute away from capital accumulation and their output also falls.

If m is small, however, then so is the increase in debt. Faced with lower consumption, patient

households now acquire additional capital, which results in more output.

Finally, we consider a transitory innovation to productivity equal to 0.01.
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Figure 15: Response to Productivity Shock, Case 1
Solid: m = 0.9, Dashed: m = 0.1
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These effects are unsurprising and do not substantially depend on m. Both types of households

increase their capital, consumption, and output. For both shocks to preferences and productiv-

ity, gt exhibits only very small changes.

5 Conclusion

The events of the Great Recession have helped spur increased attention to the macroeco-

nomic effects of limited access to credit. So far, most research has focused on how credit

constraints may contribute to short-term volatility. This paper, however, provides conditions

where varying households’ access to credit affects not just the level of output, but its steady-

state growth rate. We have shown that if labor supply is elastic, then these effects may be very

large and that the direction of the effect depends on whether households prefer to smooth their

labor supply between R&D and productive labor.
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Throughout the paper, we have not taken a firm position on the appropriate calibration of

labor supply elasticity and the desire of households to smooth their labor supply. The former

calibration remains exceptionally controversial. We note that if the reader finds the magnitude

of the effects from Simulations 3.1 and 3.2 to be implausibly large, then our results may be seen

as an additional piece of support for a more inelastic labor supply which reduces the magnitude

of the effects on the growth rate. Because the second calibration is novel to our paper, we

are unaware of other work that illuminates its correct value. Empirical work estimating its

value might pin down the direction of how access to credit affects growth and is left for future

research.
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